Demonstration of Malware
Analysis Tools

14-11-2022

Mohd Ayan Khan - 20BCE0644
Sujay Kumar ~ -20BDS0294
Gokul Raj - 20BCE2743

Submitted to: Prof Anand M

VIT

Vellore Institute of Technology

" (Deemed to be University under section 3 of UGC Act, 1956)

Overview

A malware requires to be in a spectrum from the attacks that's happening around the
internet, These different types of malware should be analyzed and processed using some
malware tool which gives us a traditional tool, cutter, a tool which uses reverse engineering
as a concept of analyzing malware. We have used this tool and analyzed every malware
which has a specific SHA code, Entropy of a file and no API calls that took place.

Introduction

Cutter is an advanced reverse engineering platform powered by Rizin. It has all the reverse
engineering features like hexdump, graph view and so on...We are now using this cutter
tool to predict which type of malware it is and what class it falls on...

Aims and Objectives

1. To find the Malware and what exactly does the malware does

2. To execute the malware by malware tool and see the functions and type of functions its
calling

3. By using Machine Learning take all the data which we collected and start make a data-set
with the raw data

4. Make a machine learning model which detects malware and the class of malware.

5. Deploy the Machine Learning model into the servers to detect malware.

Proposed Methodology

As mentioned above, we will be using the Cutter tool based on the Radare2
framework.

ayer ~ =
aye v L

Applications Places @ cutter Nov14 1055

Open File

A

About

Openile | Open shellcode | Projects

10 Select new file
[fte:s/

dropshot.exe.vir
@ ~/Downloads
Size: 191 kB

Dot oren oy e

This is the Cutter tool

Applications Places @ cutter Nov 14 10:59

Load Options.

A&

Program: /root/Downloads/dropshot.exe.vir

V! Analysis: Enabled

Level: Advanced
None Auto Exp

Analyze all consecutive functions
Type and Argument matching analysis
Analyze code after trap-sleds

Analyze function preludes

Analyze jump tables in switch statements
Analyze PUSHRET as JMP

Continue analysis after each function

Load in write mode (-w)

Do not load bin information (-n)
V| Use virtual addressing
V! import demangled symbols
[+ Advanced options

Cance

Nov14 10:59
Cutter - /root/Downloads/dropshot.exe.vir o0
Fle Edit View Windows Debug Help
Type flag name or ade
| INEI = - - 1l | | 0 O T I I[NNI EERND WO .
Functions L) Dashboard L]
Name =
@ entryo OVERVIEW
® £n.00401000
fen.0040105d Info
@ fen.00401088 File: Jroot/Downloads/dropshot.ex FD: 3 Architecture: x86
fcn.004010a7 Format: pe Baseaddr: 0x00400000 Machine: 1386
fen.004010df Bits: 2 Virtual addr: True os: windows
@ fcn.0040119b Class: PE32 Canary: False Subsystem: Windows GUI
® fen.00401147 Mode: rx Crypto: False Stripped: False
fcn.00401220 Size: 191k8 NX bit: Tue o Fals:
£cn.00401310 Type: EXEC (Executable file) PiC: True e
@ fen.004013b0 Language: ¢ Static: False Mon Feb & 00:15:47 199¢
£cn.00401400 Relro: NA NA
® fcn.00401440
£cn.00401480 Certificates
fcn.004014c0
@ fcn.00401500 Hashes Libraries
€n.00401560 ———
fcn.00401520 MDS: |0cccoece2fldddc243329014b823125
user32.dil
fenoodotsfo SHAL: [279(f728023eeaa1715403ec823801bf3493f5 diz2.dil
€n.00401640 : eeaa e < e
£¢n.00401690 SHA256: bce7a5741a92 49cd1d71 2cvapacH

fcn.004016f0

CRC32: |238bf60C
£n.00401750

» (& fcn.004017a0 ENTROPY: 7.107746
fcn.004017e0
@ fen.00401860 Analysis info
V®
fcn.004018c0 Functions: 404

fcn.00401900

" B fenanioron
@ fcn.00401a40 182

@ fcn.00401a80
fcn.00401ad0
@ fen.00401b40

lysis coverage: 62789 bytes
73728 bytes
Coverage percent: 85%

Quick Filte x
Dashboard | Strings | Imports | Search | Disassembly = Graph (entry0) = Hexdump Decompiler (entry0)

We can see the whole information of the malware file being used (Dropshot
Malware).

Basic static analysis

We started our analysis of a malware sample by statically inspecting the binary. A
simple static analysis can occasionally determine whether a file is dangerous, reveal details
about its behavior, and aid in our comprehension of the situation. Although simple and
rapid, basic static analysis is often ineffective against complex malware.

Entropy

Entropy is a metric measuring how effectively information is stored. Entropy is the
measurement of unpredictability in a set of values, to put it simply (data). Different
programmes calculate a file's entropy in a similar way. Typically, it ranges from 0.0 to 8.0.
Entropy is a trustworthy indicator of whether a file is packed, compressed, or contains
packed or compressed data. A binary that is packed will likely have a high entropy value. A
binary or some of its components are likely compressed or packed if a file has an entropy
of 6.8 or higher.

The file we are using has an entropy of 7.1, which is a very good example of
compressed data.

Understanding the strings decryption process

malware writers.

We discovered that the file decrypts its embedded strings using a really simple
technique. This function passed muster in our examination mainly because it was used
before “LoadLibraryA” and “GetProcAddress” and was called frequently throughout the
code. Therefore, it appeared to us as a method of dynamically loading libraries and
functions in order to make analysis more difficult. a strategy that is very common among

The decryption function, which can be found at 0x4012a0, seems to have two inputs.

This is the function that decrypts the strings.

r

File

Functions

Name

»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»

@ entry0

@) £cn.00401000
@ fcn.0040105d
% fcn.00401088
@) fcn.004010a7
@ fcn.004010df
@ fcn.0040119b
@ fcn.004011d7
@ fcn.004012a0
) £cn.00401310
@ fcn.004013b0
% £cn.00401400
% fcn.00401440
@ £cn.00401480
@) fcn.004014c0
@ £cn.00401500
@ £cn.00401560
) fcn.004015a0
@ fcn.004015f0
% fcn.00401640

Edit View Windows

v

Debug Help

Type flag name or address here

’»,

fcn. 00401220 (int32_t arg_8h, int32_t arg_ch);

+

y var 1ntsZ

r_8h
4h
n

2 push
2al mov
2 sub

push

BB

0x4012d2

ecx, dword [var_4h]

ecx, |1

dword [var_4h], ecx

edx, word [arg_ch]
-d [var_4h], edx

Jjge ox 2f5

2 mov eax, dword [var_4h]

2de mov ecx, dword [arg_sh]

NN N T
]

B Db g

We can see that the output of strings decrypter (eax) is being passed along with an
additional parameter, 1, to a different function at 0x4013b0.

00401220 (int32_t arg_8h, int32_t arg_ch);
ri

~ 3

This is the graph of the strings decrypter function.

Analyzing the decryption function

We already know that there are two arguments given to this function. An address is
the first, followed by a number. The integer parameter is kept in the variable arg ch, and
the address argument is kept in arg 8h. We can observe that VirtualAlloc allocates a buffer
with the size of arg ch+1 in the first block, starting at 0x4012a0. The allocated buffer's
address is then assigned to local 8h.

After that, we can see that local 4h has been given the value zero. The beginning of a
loop is the following block. We can see that edx is given the integer stored at arg ch, and
that edx then compares the integer to local 4h. Now we know that local 4h is a loop index
and arg ch is some form of length or size. Now that we are aware of the functions of both
the two local variables and one of the two arguments, we must comprehend the contents
of the address that is supplied via arg 8h. Our string decryption method was being fed the
value 0x41b8cc, as we could see. Now let's search for this address using the Hexdump
widget. To look for a flag or an address, simply type this address into the textbox in the
upper area. This half-word array of numbers, which begins at 0x41b8cc and ends at
0x0041b8e1, can be seen.

bS 0 06 00 @e 00 06 00 1c 00 06 00 07 00 ©b 20 @e 20 06
le 00 ©1 Q0 Qe @0 16 00 17 @2 13 20 1c 00 @6 02 @3 20 1c 00
) 2d 00 00 00 @2 00 17 00 06 00 @1 00 1c 00 @6 00 @7 00 @b
) @b 00 1c 00 @6 00 @7 00 @b 00 e 00 06 00 00 00 @9 00 06 00
00 @b 00 26 00 06 00 00 00 02 00 17 00 06 90 @1 @0 1c 00 06 00
) 13 00 17 00 24 00 22 00 02 @2 17 00 @6 00 @1 02 1c 20 06 00
20 19 00 22 @0 18 00 1c 00 Qe 90 1a 00 06 00 1c @0 16 00 17 @
) 19 @0 @2 00 17 00 @b 00 1c 00 @b 00 @3 20 @1 00 Qe 00 00 00
) 16 @2 17 @2 13 00 03 00 06 00 19 @0 19 02 00 00 16 00 17 00
20 1a 00 06 92 1c 00 @2 00 13 @2 11 @0 1c 00 @06 00 23 @0 1c 00
00 09 00 06 @0 1c @@ 2b @@ 11 00 20 00 @b 00 17 00 13 00 11 @0
) 17 00 @b 00 @1 00 2c 00 Qe 00 06 Q0 22 00 00 00 41 61 43

1b 00 @a 00 17 00 06 00
22 20 00 00 1f 00 @b 00
07 00 ob 00 11 00 04 00
Qe 00 06 00 22 00 00 00
1c 00 @7 00 @b 00 Qe 00
05 00 @b 00 17 00 06 00
16 00 17 @2 13 90 03 @0
13 00 @3 00 @6 00 19 00
02 00 17 00 06 00 01 00
13 00 2d 00 30 00 04 00
1b 00 @a 00 17 20 06 00
10 00 @6 @2 11 @@ 1c @0
64 44 65 46 66 47 68 69
79 5a 7a 33 32 2e 5c 45
22 00 00 00 18 00 2b 00
ob 00 11 00 04 00 13 00
13 00 @3 00 eb 00 01 00
13 00 @3 00 eb 00 01 00
19 a0 @06 a0 17 a0 @2 o0

6d 6e 4e 6f 4f 70 50 72 52 73 53 54
49 20 5f 59 51 42 3a 22 2f 40 ea ed
» @b 00 @3 00 17 00 13 @0 19 00 13 00
) 2a @0 1a 00 @a 00 06 00 Qe 00 Qe 00
) 13 00 11 00 19 00 2a 00 1d 00 17 00
90 13 00 11 00 19 00 2a @@ @a 00 1c 00
0 b 00 93 00 A6 A0 00 A0 23 A0 19 AR

56 76 77 57
00 07 00 1b 00
00 2a 00 22 00
00 19 00 19
) 19 00 19
2 2a 00 1d 0o
a0 @e 00 Qe 00

Code for the strings decryption:

The pre-defined decryption table (the string)

dec_table = 'AaCcdDeFfGhiKLIMMNNoOpPrRsSTtUuVvwWxyZz32 \EbgjHI
_YQB:"/@\x0a\x0d\x1a'

The array (0x41b8cc) which is passed to the function
off_arr=[
0x05,0x00,0x06,0x00,0x0e,0x00,0x06,0x00,0x1¢c,0x00,0x06,

0x00,0x07,0x00,0x0b,0x00,0x0e,0x00,0x06,0x00,0x22,0x00]

The length[passed
length =11

dec_str="

foriin range(length):

decr_str += dec_table[off arr[i*2]]
print ("Decrypted: %s" % (dec_str))

Output:

5

tY
Player v 3 O

Applications Places &) Firefox ESR Nov14 11:28

Z Home X & Untitledl X Z Home X | & Untitled x| + o0
« 2 C B O D localhost:8888/notebooks/Untitled.ipynb?kernel_name=python2 w ® =

2Security / Wireless Adapters VIP Membershij VPN By zSecurity @ zSecurity YouTube 2Security FB 2Security Twitter [Zaid's Linkedin MSFU KaliDocs = Exploit-DB = GHDB
y Pt p i y Y Y Yy Pl

" Jupyter Untitled Last Checkpoint: a few seconds ago (unsaved changes) e Logout
Fle E v et Cell Kemel Widgets Truste |Python2 O
B+ % @ B 4 ¥ MR B C B ok V=

In [3]: | # The pre-defined decryption table (the stri

ng)
dec_table = 'AaCcdDeFfGhiKLMmNNOOpPrRsSTtUUVVWIXyZ232.\EbgJHI _YQB:"/@\x0a\xed\x1a'

The array (6x41b8cc) which is passed to the function
off arr =

0x05,0x00,0x06,0x00, 0x0e, 0x00,0x06,0x00, 0x1c,0x00, 0X06,
0x00,0x07,6x00,0x0b, 0x00, 0x0e,0x00, 006, 6x00,0x22,0x00]

The length[passed
length = 11

dec_str = "'

for i in range(length):
dec_str += dec_table[off arr[i*2]]

print (“Decrypted: %s" % (dec_str))

Decrypted: DeleteFilew

We can see that the string was successfully decrypted, yielding the API function
"DeleteFileW."

The main() function:

Since the main() function is one of the essential ideas in programming, we are
familiar with the function's role in programmes. We'll use the Graph mode to navigate the
main flow in search of the resource decryption routine. We can observe that the main
function's opening block calls a function located at 0x403b30.

Functions 3]

Name

4 QD entry0

» (% fcn.00401000
» (% fcn.0040105d
» (%) fcn.00401088
» (& fcn.004010a7
» (% fcn.004010df
» (& fcn.0040119b
» & fcn.004011d7
» (% fcn.004012a0
» (¥ fcn.00401310 a3

» (% fcn.004013b0 SOOI “1‘11
» () fcn.00401400 AvOAAAAL} oot

int main (int

+

argc, char **argv, char **envp);
var_54h

vd

push
mov

sub

By double-clicking this line, we may access the graph of the sizable function
fcn.00403b30. As we work our way through this method, we'll encounter some absurd
Windows API calls with wrong arguments. Dropshot utilizes anti-emulation; for instance,
this function engages in anti-emulation.

Anti-Emulation

The emulators of anti-malware programmes are tricked using anti-emulation
techniques. One of the most crucial elements of many security products are the emulators.
They are employed, among other things, in the analysis of shellcode and the behavior of
malware. By imitating the target architecture's instruction set, the running environment,
and dozens or even hundreds of well-known API functions, it simulates the program's
workflow. All of this is done to trick malware into "thinking" a target user actually executed
it in a genuine environment.

The aim of many anti-emulation strategies used by malware developers is to trick a
general or even a particular emulator. The most popular method, which Dropshot's
fcn.00403b30 also uses, is the use of unusual or undocumented API calls. This method can
be strengthened by passing invalid inputs (such as NULL) to an API function that, in a real
context, should result in an Access Violation exception.

We are facing a branch as main calls the fcn.00403b30. Taking inspiration from
Cutter's Disassembly widget, here is the assembly:

As you can see, the test eax, eax followed by je... is essentially verifying
whether eax equals 0. As a result, the code would never branch to 0x40429d. The
software transferred the value 1 to eax one instruction earlier, therefore 0x40429d
will never be invoked.

Decrypting the resource
Code:

import cutter
import zlib

Rotating lambda to the right
def rot_right(val, r_bits, max_bits): return \
((val & (2**max_bits-1)) >> r_bits % max_bits) | \
(val << (max_bits-(r_bits % max_bits)) & (2**max_bits-1))

def decode_strings(verbose=True):

if verbose:
print("\n%s\n\tStarting the decode of the encrypted strings\n%s\n\n" %
(~"*60, '~"*60))

Declaration of decryption-table related variables
decryption_table = 0x41BA3C

decryption_table_end = O0x41BA77

decryption_table_len = decryption_table_end - decryption_table
decryption_function = 0x4012A0

Analyze the binary to better detect functions and x-refs
cutter.cmmd(‘aa’)

Rename the decryption function
cutter.cmd('afn decryption_function %d' % decryption_function)

10

Dump the decryption table to a variable
decryption_table_content = cutter.cmdj(
"pxj %d @ %d" % (decryption_table_len, decryption_table))

Iterate x-refs to the decryption function

for xref in cutter.cmdj(‘axtj %d' % decryption_function):
Get the arguments passed to the decryption function: length and encrypted string
length_arg, offsets_arg = cutter.cmdj('pdj -2 @ %d' % (xref['from']))

String variable to store the decrypted string
decrypted_string =""

Guard rail to avoid exception
if (not 'val' in length_arg):
continue

Manually decrypt the encrypted string
foriinrange(0, length_arg['val']):
decrypted_string += chr(decryption_table_content[cutter.cmdj(
'Pxj 1 @ %d' % (offsets_arg['val'l + (i*2)))[0]])

Print the decrypted and the address it was referenced to the console
if verbose:
print(decrypted_string + " @ " + hex(xref['from']))

Add comments to each call of the decryption function
cutter.cmd('CC Decrypted: %s @ %d' % (decrypted_string, xref['from']))

This function was added in the 2nd part of the series about dropshot
def decrypt_resource(verbose=True):

if verbose:
print("\n%s\n\tStarting the decryption of the resource\n%s\n" %
'~'*60, '~'*60))

Get information on all resources in JSON format
rsrcs = cutter.cmdj('iRj')
rsrc_101 ={}

Locate resource 101 and dump it to an array
for rsrcin rsrcs:
if rsrc['name'] == 101:
rsrc_101 = cutter.cmdj("pxj %d @ %d" %
(rsrc['size'], rsrc['vaddr']))

Decompress the zlibbed array
decompressed_data = zlib.decompress(bytes(rsrc_101))

decrypted_payload =[]

Decrypt the payload
for b in decompressed_data:
decrypted_payload.append((ror(b, 3, 8)))

Write the payload (a PE binary) to a file
open(r'./decrypted_rsrc.bin', 'wb').write(bytearray(decrypted_payload))

if verbose:
print("Saved the PE to ./decrypted_rsrc.bin")
decode_strings()

decrypt_resource()

Refresh the interface to load changes
cutter.refresh()

Output:

Starting the decode of the encrypted strings

Kernel32.dll @ 0x4013c3

ntdll.dll @ 0x4013de
ZwResumeThread @ 0x40140a
ZwClose @ 0x40144a
ZwGetContextThread @ 0x40148a
NtSetContextThread @ 0x4014ca
CreateProcessW @ 0x40150a
GetModuleFileNameW @ 0x40156a
CreateFileWw @ 0x4015aa

ReadFile @ 0x4015fa
WriteProcessMemory @ 0x40164a
Shell32.dIl @ 0x40169b
SHGetSpecialFolderPathw @ 0x4016b4
Advapi32.dil @ 0x4016fb
RegOpenKeyW @ 0x401714
Advapi32.dll @ 0x40175b
RegCloseKey @ 0x401774
DeleteFilew @ 0x4017aa
Advapi32.dll @ 0x4017eb
RegQueryInfoKeyW @ 0x401804
Advapi32.dll @ 0x40186b
RegQueryValueExW @ 0x401884
GetTempPathw @ 0x4018ca
NtWriteVirtualMemory @ 0x40190a
WriteFile @ 0x40195a
RtiSetProcessisCritical @ 0x4019aa
Psapi.dil @ 0x4019eb
GetModuleBaseNameA @ 0x401a04
OK @ 0x4039¢7

Starting the decryption of the resource

Saved the PE to ./decrypted_rsrc.bin

In[]:

12

After successfully running, our script "Saved the PE to./decrypted rsrc.bin."

The last step is to open decrypted rsrc.bin in a fresh instance of Cutter to confirm
that it is, in fact, a PE file and that we did not somehow corrupt it.

OVERVIEW

Info

File: er/build/decrypted_rsrc.bin | FD: 3 Architecture: x86

Format: pe Base addr: 0x400000 Machine: i386

Bits: 32 Virtual addr: = True 0s: windows

Class: PE32 Canary: False Subsystem: Windows GUI

Mode: r-x Crypto: False Stripped: True

Size: 131 kB NX bit: True Relocs: False

Type: EXEC (Executable file) PIC: True Endianness: ittle

Language: Static: False Compiled: Mon Nov 14 21:16:40 201

Relro:

Certificates

Hashes Libraries

kernel32.dll

MDS: 697¢515a 4f9597cb4f39b2959
user32.dll

advapi32.dll
Entropy: 6.459326

The file was identified as PE by Cutter, and it appears that the code was correctly
interpreted. The Wiper module of Dropshot is this binary that we just decrypted and saved;
on its own, this particular piece of malware is quite intriguing.

Results and discussion:

Here comes to an end about decrypting Dropshot with Cutter and r2pipe. We got familiar
with Cutter, radare2 GUI, and static analysis .We analyzed the decryption function and
wrote a decryption script in r2pipe’s Python binding. We came to know how main function
code plays a vital role and some interesting things about Anti-Emulation.We also analyzed
some components of APT33's Dropshot, an advanced malware.

13

Conclusion and Future Works:

Hence after decrypting the Dropshot,we are willing to extend our work by analyzing
different kinds of malware and make a result of comparison of each malware so that we
can understand more about the cutter tool .After testing on different malware we can
analyze how efficient is cutter tool and we can come to know some new features of it.In
future we are willing to publish our work.

References:

[1]JAlrammal M, Naveed M, Sallam S, Tsaramirsis G. Malware analysis: Reverse engineering
tools using santuko linux. Materials Today: Proceedings. 2022 Jan 1;60:1367-78.

[2]Waliulu RF, Alam TH. Reverse Engineering Analysis Forensic Malware WEBC2-DIV.
Sinkron: jurnal dan penelitian teknik informatika. 2018 Sep 22;3(1):113-9.

[3]Le, D.T., Dinh, D.T., Nguyen, Q.L.T. and Tran, L.T., 2022. A Basic Malware Analysis Process
Based on FireEye Ecosystem. Webology (ISSN: 1735-188X), 19(2).

[4]Cappers BC, Meessen PN, Etalle S, Van Wijk J). Eventpad: Rapid malware analysis and
reverse engineering using visual analytics. In2018 IEEE Symposium on Visualization for
Cyber Security (VizSec) 2018 Oct 22 (pp. 1-8). IEEE.

[5IMonnappa KA. Learning Malware Analysis: Explore the concepts, tools, and techniques
to analyze and investigate Windows malware. Packt Publishing Ltd; 2018 Jun 29.

[6]Zimba A, Simukonda L, Chishimba M. Demystifying ransomware attacks: reverse
engineering and dynamic malware analysis of wannacry for network and information
security. Zambia ICT Journal. 2017 Dec 11;1(1):35-40.

[7]Riyana A, Santoso B, Hartono R. Trojan malware analysis using reverse engineering
method in Windows 7. Technium Soc. Sci. .. 2022;30:775.

[8]Waliulu RF. Reverse Engineering Reverse Engineering Analysis Forensic Malware
WEBC2-Div. INISTA: Journal of Informatics, Information System, Software Engineering and
Applications. 2018 Sep 26;1(1).

