Object Detection using Google
Earth

Presented By

SUJAYKUMAR REDDY M
20BDS0294

Submitted to

Submitted to Sahaaya Arul Mary S.A
Faculty of Computer Science Engineering
CSE3001 — Software Engineering
Slot : L11+L12

VIT

Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

Abstract

Object detection using Google Earth is a computer vision technology that utilizes state-of-
the-art deep learning models to automatically identify and locate objects of interest within
satellite or aerial imagery provided by Google Earth. The underlying algorithmic pipeline
typically involves multi-scale feature extraction, object proposal generation, and object clas-
sification and localization. This process is often executed on high-performance computing
infrastructure, such as GPU clusters, to ensure real-time or near-real-time performance.

The detection and classification of objects within satellite imagery involves several chal-
lenges, such as occlusion, varying lighting conditions, and complex background scenes. To
overcome these challenges, deep learning models, such as convolutional neural networks
(CNNs), are trained on large-scale datasets that contain annotated examples of different
object categories. These models are then fine-tuned on specific tasks, such as building de-
tection or road extraction, to improve their accuracy and efficiency.

Object detection using Google Earth has a wide range of practical applications, including
urban planning, environmental monitoring, land use mapping, and disaster response. For
example, this technology can be used to detect changes in urban infrastructure, such as new
road construction or building developments, or to identify areas affected by natural disasters,
such as floods or wildfires. Moreover, it can also support conservation efforts by enabling
the monitoring of biodiversity and deforestation rates, as well as identifying illegal activities,
such as poaching or logging.

The proposed project aims to develop an advanced Al-based software tool capable of
accurately detecting and classifying a range of real-world objects in Google Street View and
2D /3D views of Google Earth. The tool will be designed to identify ” Generic Objects” such
as cars, shops, trees, and other objects of interest, with the ultimate goal of providing rele-
vant information to clients.

To ensure the tool’s accuracy and effectiveness, the project will incorporate state-of-the-
art computer vision and deep learning techniques. Literature surveys of existing research
will be conducted to identify best practices and possible improvements. This will be followed
by a milestone plan to guide the project’s progress.

The tool’s practical applications include urban planning, environmental monitoring, land
use mapping, and disaster response. For example, it can assist in monitoring urban in-
frastructure, detecting changes in land use patterns, identifying areas affected by natural
disasters, and even monitoring illegal activities such as logging or poaching.

i

Table of Contents

1 Introduction 1
1.1 Scope of the Project 1
1.2 Google Earth Imagery 1
1.3 Constraints in Google Earth Imagery 2
1.4 Using ML Algorithms in Google Earth Imagery 2

2 Background Analysis 4
2.1 Object Detection in Google Earth Images Using Deep Convolutional Neural

Networks e e 4
2.2 Automated detection of urban change using Google Earth imagery and ma-

chine learning e e 4
2.3 A Deep Learning Approach to Automatic Building Detection in Google Earth

Imagery o e)
2.4 Object Detection from Satellite Imagery using Deep Learning Techniques . .)

3 Algorithms Used 6
3.1 A Segmentation Problem 0 000000 6
3.2 DataSet e 6

3.2.1 Dataset Features L o Lo 6
3.2.2 Labels e 7
3.3 UNet Architecture 7
3.3.1 Usecases of UNet Architecture 8
4 Software Requirements Specification 9
4.1 Introduction 10
4.1.1 Purpose e 10
4.2 Document Conventions e 10
4.3 Intended Audience and Reading Suggestions 10
4.4 Project Scopeo e 11
4.5 Overall Description L 12
4.5.1 Product Perspective 12
4.5.2 User Classes and Characteristics 13
4.5.3 Product Functions o 13
4.5.4 Operating Environment00 13
4.5.5 Design and Implementation Constraints 13

il

4.6 System Features. L 14

4.6.1 Functional Requirements 14

4.7 External Interface Requirements oL 15
4.7.1 Software Interfaces Lo 15

4.7.2 Hardware Interfaces. Lo L oL 16

4.8 Other Nonfunctional Requirements 16
4.8.1 Performance Requirements 0000 16

4.8.2 Security Requirementso 17

4.8.3 Software Quality Attributes oL 18

5 Diagrams in Software Engineering 19
5.1 Work Breakdown Structure 000 19
5.2 Gantt Chart 20
5.3 DataFlow Diagram o 20
54 ER Diagramo Lo e 21
5.5 Use Case Diagram e 22
5.6 Class Diagram e 23
5.7 Sequence Diagram L 24
5.8 State Chart Diagram o o 24
5.9 Communication Diagram 0 o000 25
5.10 Activity Diagram 26
5.11 Component Diagram o e 27
5.12 Package Diagram e 27
5.13 Deployment Diagram Lo Lo 28

6 Implementation 29
6.1 Google Cloud Platform (GCP) 29
6.1.1 GCP Dashboard L. 29

6.1.2 GCP Service Accounts L o 30

6.1.3 GCP Identity and Access Management 30

6.2 Data Analysis and Data Visualization 31
6.3 Pre-Procesing Using Patchify 0. 34
6.4 Training using UNet Architecture L. 36
6.5 Connection to GCP Cloud using key.json 38

7 Testing the Model 41
7.1 Testing the Image from GCP GE 41

8 Conclusions and Future Work 44
8.1 Conclusion e e e 44
8.2 Future Work L 44
References 45
APPENDICES 45

v

A Python Implementation 46

A1 Libraries e 46
A2 Code . . . o o e e 47
A.2.1 Pre-Processing 47
A22 Trainingo 50
A.2.3 GCP Connection GE API 56

Chapter 1

Introduction

1.1 Scope of the Project

The project scope involves the development of an advanced Al-based software tool for object
detection in Google Earth and Google Street View. The tool will be designed to identify and
classify various real-world objects, including cars, shops, trees, and other objects of interest.
The project will employ state-of-the-art computer vision and deep learning techniques to
ensure the tool’s accuracy and effectiveness.

The project view is to create a tool that can support various industries and domains, in-
cluding urban planning, environmental monitoring, land use mapping, and disaster response.
For example, the tool can assist in monitoring urban infrastructure, detecting changes in land
use patterns, identifying areas affected by natural disasters, and even monitoring illegal ac-
tivities such as logging or poaching. The tool will also enable clients to specify locations
of interest and request data from Google API, which will be processed and provided to the
client in a user-friendly format.

Google Earth Imagery can be used for a variety of purposes, such as urban planning,
environmental monitoring, disaster response, and tourism. For example, urban planners can
use the imagery to analyze land use patterns, identify areas for development, and assess the
impact of new construction projects on the surrounding environment. Environmentalists
can use the imagery to monitor changes in land cover, track deforestation rates, and identify
areas affected by natural disasters such as fires, floods, or landslides.

1.2 Google Earth Imagery

Google Earth Imagery is a collection of high-resolution satellite and aerial images that pro-
vide a detailed view of the Earth’s surface. This imagery is constantly updated and can
be accessed through the Google Earth platform, allowing users to explore and navigate the
planet from a bird’s-eye perspective.

The images in Google Earth Imagery are typically captured by commercial satellite com-
panies or government agencies, such as NASA or the US Geological Survey. These images
are often taken using advanced sensors and cameras, which can capture fine details and
subtle variations in the Earth’s surface, such as terrain features, vegetation, and man-made

structures.

Google Earth Imagery covers almost the entire planet and includes both rural and urban
areas. The imagery is available in different resolutions, ranging from 15 meters per pixel
(m/p) for some parts of the world, to as high as 15 cm/p for certain urban areas. The
high-resolution imagery allows users to see details such as individual buildings, cars, and
even people.

The imagery is also a popular tool for virtual tourism, allowing users to explore famous
landmarks and tourist destinations around the world. Users can zoom in on specific locations,
tilt and rotate the view, and even explore underwater areas through the use of 3D imagery.

1.3 Constraints in Google Earth Imagery

While Google Earth Imagery offers a wealth of data and information, there are several
constraints and challenges that need to be considered. Here are some of the major ones:

1. Resolution: The resolution of Google Earth imagery can vary widely, depending on
the location and the type of imagery. In some cases, the resolution may not be high
enough to detect small objects or features of interest.

2. Cloud Cover: Cloud cover can obscure important details in Google Earth imagery,
making it difficult to obtain accurate information about certain areas.

3. Quality: Google Earth imagery quality can vary depending on the source and age of
the imagery. In some cases, the imagery may be outdated or low-quality, which can
affect the accuracy of the analysis.

4. Image distortion: Imagery can be distorted due to the terrain and the angle of the
camera when the image was captured. This can affect the accuracy of the analysis,
especially when attempting to measure distances or identify specific features.

5. Data Availability: Not all areas of the world have high-quality Google Earth imagery
available. This can limit the scope of analysis for certain regions or countries.

6. Data privacy: Google Earth imagery may capture sensitive or private information,
such as military installations or private property. Careful consideration must be given
to privacy concerns when using this data.

7. Computational resources: Processing and analyzing large volumes of Google Earth
imagery can be computationally intensive, requiring high-performance computing re-
sources and specialized software tools.

1.4 Using ML Algorithms in Google Earth Imagery

There are several potential use cases for using machine learning (ML) algorithms in Google
Earth imagery to detect rooftops.

1. Urban planning: City planners and developers can use ML algorithms to identify
rooftops in satellite imagery to better understand the current urban landscape and to
plan future developments.

2. Disaster response: In the aftermath of natural disasters, such as earthquakes, floods,
and wildfires, ML algorithms can be used to quickly identify damaged buildings and
prioritize search and rescue efforts.

3. Energy efficiency: ML algorithms can be used to identify rooftops that are suitable
for solar panel installations, which can help to increase energy efficiency and reduce
reliance on fossil fuels.

4. Insurance: Insurance companies can use ML algorithms to assess the risk of damage
to rooftops from severe weather events, which can help to inform pricing and coverage
decisions.

5. Property assessment: Real estate companies and property assessors can use ML algo-
rithms to identify rooftops and assess the value of properties based on factors such as
size, condition, and location.

ML algorithms can help to automate the process of rooftop detection in Google Earth im-
agery, enabling faster and more accurate analysis of the data. This can lead to better
decision-making in a variety of industries and domains.

Chapter 2

Background Analysis

2.1 Object Detection in Google Earth Images Using
Deep Convolutional Neural Networks

The paper[l] proposes a deep convolutional neural network (CNN) approach for object de-
tection in Google Earth images, particularly for detecting buildings. The paper highlights
the limitations of existing methods that rely on manual feature extraction and classification,
and proposes that deep learning techniques can improve building detection in Google Earth
images. The authors provide details of their methodology, which involves training a CNN
model on a large dataset of annotated Google Earth images, and discuss the steps involved in
preparing the dataset and training the CNN model. They then evaluate the performance of
the model using a test set of Google Earth images and compare it to existing methods. The
results show that the proposed method outperforms existing methods in terms of accuracy
and scalability, demonstrating the potential of deep learning techniques for object detection
in Google Earth imagery.

2.2 Automated detection of urban change using Google
Earth imagery and machine learning

The paper [3] provides a comprehensive review of traditional and machine learning-based
approaches for detecting urban changes using Google Earth imagery. The authors discuss
the advantages and limitations of various techniques, including image differencing, object-
based change detection, and supervised and unsupervised machine learning methods. The
authors also highlight the potential of deep learning-based methods, such as convolutional
neural networks (CNNs), for urban change detection due to their ability to learn complex
features from the images.

2.3 A Deep Learning Approach to Automatic Building
Detection in Google Earth Imagery

The paper [5] proposed a method on a test dataset of Google Earth images and compared
its performance with other state-of-the-art methods. The results showed that their method
outperformed other methods in terms of accuracy and processing time. The paper concludes
that the proposed method has the potential to be used for various applications, including
urban planning, disaster management, and environmental monitoring. The authors suggest
that future research could focus on improving the accuracy of the model by incorporating
additional data sources, such as LIDAR and multi-spectral imagery, and exploring the use
of transfer learning to adapt the model to different geographical regions.

2.4 Object Detection from Satellite Imagery using Deep
Learning Techniques

The paper [4] presents a method for object detection from satellite imagery using deep
learning techniques. Object detection from satellite imagery faces several challenges such as
lighting variations, cloud cover, and variations in object size and orientation. To overcome
these challenges, the paper proposes a deep learning model based on the Faster R-CNN
architecture, which is trained on a large dataset of satellite imagery. The model uses a
convolutional neural network (CNN) to extract features from the input image, followed
by region proposal generation and object classification. The performance of the proposed
method was evaluated on a publicly available dataset of satellite imagery, and the results
showed that the method achieved higher accuracy and faster processing time compared to
other methods.

Chapter 3

Algorithms Used

3.1 A Segmentation Problem

Image segmentation is a process of dividing a digital image into multiple segments or regions,
each of which corresponds to a distinct object or part of the image. The goal of image seg-
mentation is to simplify the image representation by partitioning it into meaningful regions,
which can then be used for analysis, manipulation, or understanding.

There are several methods for image segmentation, including thresholding, edge detec-
tion, region growing, clustering, and machine learning-based methods. Thresholding is a
simple method that segments an image by setting a threshold value and classifying pixels
based on whether they are above or below the threshold. Edge detection methods identify
boundaries between regions by detecting sharp changes in image intensity. Region growing
methods start from a seed point and iteratively add neighboring pixels that meet certain
criteria. Clustering methods group pixels based on their similarity in feature space. Ma-
chine learning-based methods use algorithms such as decision trees, random forests, and deep
neural networks to learn the mapping between image features and segment labels

3.2 DataSet

Segmented Labels are available in [2] The LandCover.ai (Land Cover from Aerial Imagery)
dataset is a dataset for automatic mapping of buildings, woodlands, water and roads from
aerial images.

3.2.1 Dataset Features
1. land cover from Poland, Central Europe
2. three spectral bands - RGB
33 orthophotos with 25 cm per pixel resolution (9000x9500 px)

8 orthophotos with 50 cm per pixel resolution (4200x4700 px)

oo W

total area of 216.27 km?2

3.2.2 Labels
1. classes: building (1), woodland (2), water(3), road(4)

2. areas: 1.85 km2 of buildings, 72.02 km2 of woodlands, 13.15 km2 of water, 3.5 km2 of
roads

3.3 UNet Architecture

The U-Net architecture is a type of neural network that is commonly used for image seg-
mentation tasks. It was specifically designed for biomedical image segmentation, but has
also been used for other types of image segmentation.

What makes the U-Net architecture unique is its use of a contracting path and an expan-
sive path. The contracting path is a series of convolutional and pooling layers that reduce
the spatial resolution of the image, while also increasing the number of feature channels.
This helps the network learn high-level features from the input image.

The expansive path is a series of upsampling and convolutional layers that increase the
spatial resolution of the image, while reducing the number of feature channels. This helps
the network create a segmentation map that has the same spatial resolution as the input
image.

64 64
128 64 64 2
input
ime?ge ol e |4 OUDUL
- segmentation
tile N = 2
3l & map
> > > X
S E 1
[To]l IBTs] WTe}
'128 128
256 128
MK
HE St Bk
N N o~
' 256 256 512 256 '
L bt q[l*ltl =»conv 3x3, RelLU
SH Sl 3 = ol o d
~8 o o g 8 copy and cro
' 512 512 1024 512 ' py p
Lefe 1 Lieienn ¥ max pool 2¢2
ol L Y &
¥ 10 | S 4 up-conv 2x2
& I - -
o 3 Y =» conv 1x1
o~

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

3.3.1 Usecases of UNet Architecture

The U-Net architecture is particularly useful for segmentation problems because it can ef-
fectively capture both local and global features. The encoder network can capture global
features such as context and image-level information, while the decoder network can capture
local features such as object boundaries and fine details. The skip connections help propagate
information across the network, improving the accuracy of the segmentation. Additionally,
the U-Net architecture is computationally efficient and can be trained on relatively small
datasets, making it a practical choice for various segmentation tasks.

1. High Accuracy: The U-Net model has shown to achieve high accuracy in various
image segmentation tasks, including medical image segmentation and object detection
in satellite imagery.

2. Efficient use of data: The architecture makes efficient use of the available training data
by utilizing the skip connections. The skip connections allow the network to combine
low-level and high-level features, which helps in reducing the problem of vanishing
gradients.

3. Reduced Overfitting: The architecture uses data augmentation techniques, such as
flipping, rotating, and zooming, which helps in preventing overfitting.

4. Fast and Easy Training: The architecture is relatively easy to train, and training times
are faster compared to other complex architectures.

Chapter 4

Software Requirements Specification

for

Object Detection using Google Earth
Version 1.2

Prepared by : SujayKumar Reddy M
(20BDS0294)

Sahaaya Arul Mary S.A

4.1 Introduction

4.1.1 Purpose

The usage of Google Earth and Google Street View is not very habitated by the users.
In fact we can do many things for example Detecting Rooftops, Detection of more Heavy
Vehicles to reduce the Pollution, in these applications this product is specifically intended
for. As when the Vehicle is in transit we cannot track the vehicle in google earth because
google earth is a satelite imagery where we cannot watch live changes.According to my
research the google earth satellite imagery updates the images for every 1 to 3 years and
NASA’s Livestat project updates for every 16 days. This application is very much useful for
drones to detect the roof-tops and all other Static Objects.My tool will be an interface for
the research community for analyzing the vegetation in a particular area within a period of
2-3 years and Rooftop Detection for the drones to deploy a model and other various static
applications. My tool will be an interface for all the entities which are available and they
can use this to detect the produced Objects and this is the main concept of my model/tool.

4.2 Document Conventions

GEE Its an API Service by Google named as
Google Earth Engine.

GSV Google Street View is an API Service Pro-
vided by the GEE and it mainly concentrates
on Street Photography useful for AR/VR
Apps

Static Objects The Object which cannot be changed over
2-3 years of time like Buildings, farms and
Vegetation within a particular reach.

THite An Tensorflow Model which is used to Gen-
erate the Supervised Learning Approach for
the Static Object Detection

4.3 Intended Audience and Reading Suggestions

This Software Requirement Specification is for Myself for the future reference, Professor and
testers. This SRS is done according to the template given by the Professor. Issues List is
provided at the end of the document at Appendix C. Further, the discussion will provide
all the internal, external, functional, and also non-functional information about ”Object
Detection from Google Earth Images”.

10

T - T

(\ ij)—> Process ‘ l

e

‘ Our System

Google Earth
Engine

GE DataSet

L ‘,'/ Object ;\
Ve R \ Identification
[Model \7 P
\ %

Figure 4.1: Entire work-flow

4.4 Project Scope

The Major Stakeholders are the ...
1. User
2. GEE
3. Object Identification
4. Time
5. Tracking

GEE will take care with the communication of the satellites and takes in the data of satellite
image processing. We will only consider that processed image as the input to our model
or tool. The GEE API Service will give us an API Services where we can navigate for a
zommed in image to process the image carefully. The Service would be connected with our
System which will detect the Objects and track the motion of the detected object.

Object Identification is an Machine Learning Model which detects the objects by Open CV2
it marks the object and classifies as an provided class label.

The User communicates with the GEE Service through our interface and gives us the start-
ing co-ordinates and starting image to identify.

The Time is important because we are considering the static imagery of the Google Earth
Engine. We need the images which are useful for real time data by using various sensors but
the dataset which we use to train our data.

11

Figure 1.1 (Entire work-flow) is the overview of the project. Connection of all the entities
are dependable to each others. This gives the simple idea about the functional activities of
the project.

Google Earth Engine will be a static input for our web application because the model which
we trained for.
So, every entity is vary much interactive with each other.

The project scope for Object Detection from Google Earth Images would typically include

the following;:

1. Object Detection Algorithm: Develop a computer vision algorithm to detect ob-
jects in Google Earth images using techniques such as convolutional neural networks
(CNNs), region-based convolutional neural networks (R-CNNs), and You Only Look
Once (YOLO) algorithms.

2. Image Dataset: Create or obtain a dataset of Google Earth images for training and
testing the object detection algorithm. The dataset should include a variety of different
objects in different environments and under different conditions.

3. Model Training: Train the object detection algorithm using the image dataset. This
will involve adjusting the parameters and architecture of the model until it can accu-
rately detect objects in the images.

4. Model Deployment: Integrate the trained object detection model into an application
that can be used to process Google Earth images and detect objects within them.

5. User Interface: Develop a user interface that allows users to select an image from
Google Earth, process it with the object detection model, and view the results. The
interface should be intuitive and easy to use.

6. Performance Evaluation: Evaluate the performance of the object detection model by
comparing its results to a ground truth dataset. This will involve measuring metrics
such as precision, recall, and accuracy.

7. Optimization: Optimize the performance of the object detection model by making
changes to the algorithm, dataset, or other aspects of the system as necessary.

4.5 Overall Description

4.5.1 Product Perspective

Google earth is a large system and My Tool integrates into this particular API Services for
providing various analysis of geo-spatial data. Main goal of this project is to minimize the
workflow of using drones to calculate the static data instead we can use our tool to Identify
the static objects for data analysis.

12

4.5.2 User Classes and Characteristics
This Object Detection has basically 2 types of users.

e Researchers

e Business Entitites

The Researchers working on SOLAR Energy they have the very useful application to know
how much area does the each village has so we can implement it by comparatively.

The Business Entities like Amazon can use the models to detect the rooftops to deliver
the packages for per user.

4.5.3 Product Functions

The Product should be able to detect the rooftops for the drones in-order to land the package
for asset management services. If the Object is the Farming Lands then the Drone would
find the optimal point where all the agriculture sensors would be able to communicate within
the distance.

Before using the main function of the software result process, users have to be registered.
The Products primary source is the Machine Learning model. Result is the main feature of
all. It contains the Object which is marked by the Open CV2.

4.5.4 Operating Environment

The website will be operate in any Operating Environment - Mac, Windows, Linux etc.

4.5.5 Design and Implementation Constraints
As the ML model is the primary source we consider that as a Design.

e From the Unprocessed Image from the GE.
e Supervised Learning Techniques.

e (Class Labels and Unsupervised Learning Techniques.

From the GE Image we need to detect the static objects and find a suitable environment
with color grading which would provide us an Undefined colored so, it acn be easily seen by
the Sensors or Microcontrollers in the Drones.

Every Image would happen to work with utmost accuracy to detect the static images.
Design and implementation constraints for object detection from Google Earth can vary
depending on the specific use case and requirements. However, some common constraints

and considerations are:

13

e Image Quality: The quality and resolution of the satellite images in Google Earth can
have a significant impact on the accuracy and reliability of object detection. Poor
quality images with low resolution, or images that are obstructed by clouds or other
factors, can make it difficult to accurately detect objects.

e Object Variability: The variability of objects in satellite images can also impact the ac-
curacy and reliability of object detection. Objects may vary in size, shape, orientation,
and appearance, which can make it challenging to train object detection algorithms to
recognize them.

e Computational Resources: Object detection can be computationally intensive, and
large amounts of data need to be processed in real-time to ensure fast and accurate
results. It is important to carefully consider the computational resources required to
run the object detection algorithm, as well as the hardware and software infrastructure
required to support it.

e Data Privacy and Security: Google Earth images may contain sensitive information
that needs to be protected, and it is important to ensure that the object detection
algorithm is designed and implemented in a way that protects this information.

e Data Storage and Management: The amount of data generated by object detection
from Google Earth images can be large, and it is important to have a robust and
scalable data storage and management system in place to handle this data.

These are some of the key design and implementation constraints for object detection
from Google Earth. However, there may be additional constraints and considerations that
are specific to your use case and requirements.

4.6 System Features

4.6.1 Functional Requirements

1. The object detection software should be able to process images from Google Earth
and extract relevant information for object detection. This may involve implementing
algorithms for image pre-processing, such as image resizing, and image normalization.

2. The object detection software should be able to detect objects of interest in the images,
such as buildings, vehicles, and roadways. This may involve implementing object
detection algorithms, such as deep learning-based object detection, and training the
algorithms on annotated image data.

3. The object detection software should be able to classify the objects detected in the
images into relevant categories, such as type of building, type of vehicle, or type of
roadway. This may involve implementing object classification algorithms and training
the algorithms on annotated image data.

14

4. The object detection software should be able to locate the objects in the images and
provide the coordinates of the objects. This may involve implementing object local-
ization algorithms, such as bounding box regression, and training the algorithms on
annotated image data.

5. The object detection software should be able to generate outputs, such as annotated
images or data reports, that provide information about the objects detected in the im-
ages. This may involve implementing output generation algorithms and user interfaces
for visualizing the outputs.

6. The object detection software should provide user interfaces for interacting with the
software, such as uploading images, configuring the object detection algorithms, and
viewing the outputs. This may involve implementing graphical user interfaces, com-
mand line interfaces, or application programming interfaces (APIs) for integrating the
object detection software with other software systems.

4.7 External Interface Requirements

TensorFlow Lite (TFLite) is a lightweight version of TensorFlow, designed to run on resource-
constrained devices such as mobile phones and embedded systems. The TFLite object detec-
tion model can be integrated into various external user interfaces to provide object detection
capabilities to end users. Some common external user interfaces for TFLite object detection
models are:

1. Mobile Applications
2. Web Applications
3. Embedded Systems.
4. Robotics

These are some of the external user interfaces that TFLite object detection models can be
integrated with. The specific user interface that you choose will depend on your use case
and requirements. It is important to carefully consider the requirements of your application
and the resources available on your target device when selecting an external user interface
for your TFLite object detection model.

4.7.1 Software Interfaces

1. Mobile SDKs: TFLite object detection models can be integrated into mobile software
development kits (SDKs), allowing developers to build mobile applications that perform
object detection on mobile devices.

2. Web API: TFLite object detection models can be deployed as web APIs, allowing
object detection to be performed over the internet. This can be useful for building
cloud-based object detection systems that can be accessed by a variety of clients, such
as mobile applications, web applications, and desktop applications.

15

3. Robotics API: TFLite object detection models can also be integrated into robotics
APIs to provide object detection capabilities for autonomous robots.

4. Embedded API: TFLite object detection models can be integrated into embedded APIs,
allowing developers to build custom embedded systems that perform object detection.

4.7.2 Hardware Interfaces

The Google Earth API can be integrated with various hardware interfaces to provide mapping
and visualization capabilities to end users. Some common hardware interfaces for the Google
Earth API are:

1. Web Browsers: The Google Earth API can be integrated into web browsers to provide
interactive mapping and visualization capabilities to end users. This allows users to
access Google Earth in their web browsers and interact with maps and satellite imagery.

2. Embedded Systems: The Google Earth API can be integrated into embedded sys-
tems, such as GPS devices and in-vehicle navigation systems, to provide mapping and
visualization capabilities in these environments.

3. Robotics Hardware: The Google Earth API can also be integrated into robotics hard-
ware, such as autonomous robots, to provide mapping and navigation capabilities for
these systems.

These are some of the hardware interfaces that the Google Earth API can be integrated
with. The specific hardware interface that you choose will depend on your use case and
requirements. It is important to carefully consider the requirements of your application and
the resources available on your target device when selecting a hardware interface for the
Google Earth API.

4.8 Other Nonfunctional Requirements

4.8.1 Performance Requirements

The performance requirements for object detection from Google Earth images will depend
on a number of factors, including the size of the images, the complexity of the objects being
detected, the desired accuracy and speed of the object detection process, and the resources
available on the hardware platform where the object detection is being performed. Some of
the key performance requirements for object detection from Google Earth images include:

1. Computational Power: Object detection algorithms can be computationally intensive,
and therefore a powerful processing platform is necessary to perform object detection in
real-time. This may involve using high-performance CPUs, GPUs, or other specialized
hardware such as Tensor Processing Units (TPUs).

16

2. Memory: Object detection algorithms require large amounts of memory to store the
image data and intermediate results of the object detection process. Therefore, the
hardware platform should have sufficient memory to support the object detection pro-
cess.

3. Network Bandwidth: If the object detection is being performed in a cloud environment,
the network bandwidth between the cloud and the client device may also be a factor
in the performance of the object detection process.

4. Latency: The latency of the object detection process is an important factor in the
overall performance of the system. Latency refers to the time it takes for an object
detection request to be processed and the results to be returned to the client. Low
latency is important for real-time applications where the results of the object detection
process need to be available immediately.

5. Accuracy: The accuracy of the object detection process is also a critical factor in
the overall performance of the system. High accuracy is important for applications
where the object detection results are used to make important decisions, such as in
autonomous vehicles or surveillance systems.

These are some of the key performance requirements for object detection from Google Earth
images. The specific performance requirements for your application will depend on the
details of your use case and the desired outcomes. It is important to carefully consider the
performance requirements of your application and the resources available on your hardware
platform when designing and implementing an object detection system from Google Earth
images.

4.8.2 Security Requirements

Security is an important consideration in any application that involves processing and storing
sensitive information, including object detection from Google Earth images. Some of the key
security requirements for object detection from Google Earth images include:

1. Data Privacy: The privacy of the image data being processed and stored must be
protected. This may involve encrypting the image data and ensuring that it is only
accessible by authorized individuals.

2. Data Integrity: The integrity of the image data must be protected to prevent unautho-
rized changes to the data. This may involve implementing data integrity checks and
audit trails to detect any unauthorized changes to the data.

3. Access Control: Access to the image data and the object detection results must be
controlled to ensure that only authorized individuals have access to the data. This
may involve implementing user authentication and authorization mechanisms, such as
usernames and passwords, to control access to the data.

17

4. Network Security: The network over which the image data is transmitted and the

object detection results are returned must be secure to prevent unauthorized access to
the data. This may involve implementing encryption algorithms, such as SSL/TLS, to
secure the data transmission.

Physical Security: The hardware platform where the object detection is performed
must be physically secured to prevent unauthorized access to the image data and the
object detection results. This may involve implementing physical security measures,
such as security cameras, access controls, and secure data storage facilities.

These are some of the key security requirements for object detection from Google Earth
images. The specific security requirements for your application will depend on the sensitivity
of the image data and the desired level of security. It is important to carefully consider the
security requirements of your application and to implement appropriate security measures
to protect the image data and the object detection results.

4.8.3 Software Quality Attributes

Software quality attributes are characteristics of software that are important to ensure that
the software is fit for its intended use. In the context of object detection from Google Earth
images, some of the key software quality attributes include:

1.

Usability: The object detection software should be easy to use and understand for the
end-users. This may involve providing clear and concise user interfaces, user-friendly
error messages, and intuitive navigation.

Reliability: The object detection software should be reliable and should perform its
intended functions accurately and consistently. This may involve implementing robust
error handling mechanisms, redundant components, and regular software testing.

Performance: The object detection software should perform efficiently and quickly,
especially for real-time applications. This may involve optimizing the algorithms for
the hardware platform, reducing latency, and improving computational performance.

Scalability: The object detection software should be able to handle increasing vol-
umes of image data and users without degradation in performance. This may involve
implementing scalable algorithms and architectures, load balancing, and distributed
computing.

Maintainability: The object detection software should be maintainable, so that it
can be updated and improved over time. This may involve writing clear and well-
documented code, using modular design patterns, and following software development
best practices.

18

Chapter 5

Diagrams in Software Engineering

5.1 Work Breakdown Structure

SOFTWARE ENGINEERING AUTHOR: SUJAY KUMAR

DATE: 20.12.2022
J-COMPONENT AND LAB VERSION: 1.0

OBJECT DETECTION BY GOOGLE EARTH

MODEL CLOUD
DEEP GAPI - GE WEB INTERFACE
EVALUATION PROVIDER
LEARNING
DATA TESTING THE DATA PREPARE A CLOUD
PRE_PROCESSING WITHIN OUR DATA S A AR @ PROVIDER (AWS) LS A
BOTH VIDEOS AND EC2 STORAGE TO
INTERACTIONS B/W CHOOSE THE GE
pRaiae IMAGES AR T STORE THE OUTPUT CONNECT TO CLOUD

F1 PERCENTAGE AND

COMPUTER VISION TPINFP.FN CO-ORDIATES SAVE THE DATA RETRIEVE DATA
MARK THE OBJECT STATIC DATA TECHNIQUES IMFOFTSTT'LETECURRENT
GEO_TS:QT;:&LGDATA 'NSERT'HTE"ﬁgégf INTO COMPRESSED DATA HOSTING

TOP, STREET AND 3D
VIEWS TEST THE RESULTS

TRAIN THE MODEL

19

Gantt Chart

1D Name

1 ¥ Deep Learning
2 Model Greation
3 Model Testing
4 GAPI-GE

5 Cloud Provider
] Web-Interface

5.3

Jan, 2023 Feb, 2023 Mar, 2023 Apr,...

02Jan 08 Jan 15Jan 22 Jan 29 Jan 05Feb 12 Feb 19Feb 26Feb O5Mar 12Mar 19Mar 26Mar 02...

DataFlow Diagram

detected object image

IMAGE PROCESSING

Using Image Pracessing
Techniques we take in the .

Processed Image

data

Object

i
4 Recognition
Ay y

MODEL

MARKS THE
IMAGE

This would know all
the objects with
names.

Predict the Interactions

data
data 0 SPATIAL IMAGE
. E Data
Ve .
/ Proximity
i Objects }
'\remgn) GAPI CLIENT
. ACloud Satellite

R

source which
gives the pictures

of geo-spatial
image

Tracing Instance

Ittraces the
object using
Interactions

J_I

Street View Data

P

,'/ Take 3 W
| different }
\ datasets /
AN /

20

5.4 ER Diagram

ML Model
|
|
|
1
|
r
[
gapi_id (fk)
_ Image Disintegration
Height
Image Classification
Width
1= Dimensionality
I L Reduction
—
————— ————{APPID || TiLite model check
Optimized Objects
1.* Static Object
GAPI Detection
gapi_id (pk)
Coordinates
Zoom Attribute

21

5.5 Use Case Diagram

customer

cv2

OBJECT DETECTION

TF-LITE

Object Detection

+Detected Image

+co-orxd |

Input Validation

admin

+Image
Image
+conn_sha
— 1 «extend»
«extend» H
1

22

GAPI

5.6 Class Diagram

+CV_co-ordinates

O

Image Divider

+Check()

+divide_param()
+divide_save()

+best_image

Image

-image [][[]: int

O

Image Denoiser

+1. Pixelating()

+image

A i
TF-LITE ' 1
i +image
v +image
Object detection
+cv_coord()
[}----—-3 Image Processing

+pixels [][1(]

+Check()
+Pixeling()
+divide_param()
+divide_save()

+image

Input Validation

+x-coordinate: String
+y-co-ordinate: String
+image [][][]: int

+gapi_client(GE)

+client

+key

GE Packages

+connect

+best_image [][][]: int

+zoom_in()
+best_found()

23

+key

Key Store

#key

Connection

+keyValid()

+shal: String

+shal_valid()
+connect_google()

5.7 Sequence Diagram

sd SequenceDiagraml J

‘ Communication and Server ‘ TF-Lite ‘ Divider ’ Pre-Processing ‘ ‘ GE Package Input Validation
0 1: coord H ?:i:coord | H 2: connect(shal) H 4 connect
L 6 : client |
5:0 (Image)]
7| CV2 Markings
NPT |

9 : Output Image

BAPI Client

seq loop J L] R 10:Tmage
seq Model J

11 :Image 4 H

12 : Image 3

13 :image

15 : Denoised Image

seq TF-Lite Model)

f

5.8 State Chart Diagram

IMAGE

CHECK Input validation

check coord

PROCESSED IMAGE

IMAGE

connect SHA1

connection

modelling |

Denoising TF-Lite CV2 marking

24

5.9 Communication Diagram

sd CommunicationDiagraml)

7 . Processed Image
<+

8 : Divided Image
—>

Preprocessing

9 : Denoised Image
—>

TF-Lite

6 : Image

Divider

5:1Image
—

Input Validation

12

. Image and coord

CV2 Marking

T 14 : coord

Interface

13 : Object Detected
<+

Communication and Server

4 : Image

-4——11: Detected Image

1:shal--req
— >

Connection

lZ : connect
la : client

GE Package

GAPI Client

KeyStore

25

5.10 Activity Diagram

USER INTERFACE

COMMUNICATION AND SERVER

MODEL

co_ord

Input co-ordinates

Input Validation

"Error"

Error

"Error"

connect

Request Image

Image

image
GAPI
Connect Model
Final

Denoised _Image

Pre-Processing

Detected ?

TFLITE

‘[Image
<

Marked Image

CV2 marking

Image Freeze

5.11 Component Diagram

START //Q % Input Validation

y 3
iﬁm oR GAPI CONNECTION o
v

Connect_Model

g GET_IMAGE
CFINAL OUTPUT D) \C
L1 final_free:

TF-LITE
DENOISER Eﬁ .
DIVIDER CV2Markings

5.12 Package Diagram

]
INTERFACE MODULE

— OUTPUT SCREEN < Rl el s ekl e
Google Maps Design ,:
— GET_IMAGE [~~"~-=+--3 h [] :
INPUT VALIDATION CONNECT MODEL :
i A :
v Model .:
:
DENOISER :
1 :
TFLITE | €V2 Markings :

27

5.13 Deployment Diagram

[

GAPI-CLOUD

GAPI-CLIENT

MODEL - CLOUD

PRE-PROCESSING

TF-LITE

KEYSTORE

CONNECTION

Server Communi

ERROR

MODEL-CONNECT

INPUT-CO_ORDINATES

28

Chapter 6

Implementation

6.1 Google Cloud Platform (GCP)

6.1.1 GCP Dashboard

€ console.cloud.google.com @

Go gle Cloud ‘ o® Objectdetd ¥ ‘ { Search (/) for resources, docs, products and more Q search ‘ Q Q_ @ H

API APIs and services APIs & Services

» Enabled APIs and services

s
&

-+ ENABLE APIS AND SERVICES

Thour 6hours 12hours « 1day 2days 4days 7days 14days 30days

i1 Library
o+ Credentials Traffic : Errors :
0.15/; 1
OAuth consent screen ¢
S Page usage agreements o1
is
\ 0.05/s
L
a
T T . T T 0 T T T T o
UTC45:30 06:00 12:00 18:00 5 Apr UTC+5:30 06:00 12:00 18:00 5 Apr
Median latency :
gmiliseconds
emiliseconds
4milliseconds
2miliseconds
T =T T T o
UTC45:30 06:00 12:00 18:00 5 Apr
T Filter Filter (2]
Name 4 Requests Errors (%) Latency, median (ms) Latency, 95% (ms)
<1 Google Earth Engine API 200 0 96 67,108

29

6.1.2 GCP Service Accounts

& console.cloud.google.com @

= Google Cloud ‘ e Objectdetd v ‘ [Search (/) for resources, docs, products and more ‘ Q_ search] BE 4o ® :

API APIs and services Credentials + CREATE CREDENTIALS @ DELETE \~ RESTORE DELETED CREDENTIALS

<> Enabled APIs and services Create credentials to access your enabled APIs. Learn more

W Library

APl keys
O Credentials
(m} Name Creation date Restrictions Actions
OAuth consent screen No AP keys to display

% Page usage agreements

OAuth 2.0 Client IDs

(m} Name Creation date Type Client ID Actions
O EENotebook- suzzay19 4 Apr2023 Desktop 450664540293-8u70. .. @ Va4
Service Accounts Manage service accounts
0O email Name 4 Actions
O suiey jam com sujay V]
O j 0.iam. om sujay_gep Pl |

6.1.3 GCP Identity and Access Management

€ console.cloud.google.com @

Go g[e Cloud [* Objectdetd ¥] [Search (/) for resources, docs, products and more ‘ Q_ search] 9] Q @ H
e 1AM and admin IAM +8 GRANT ACCESS -2 REMOVE ACCESS (=] HELP ASSISTANT @ILEARN
PERMISSION RECOMMENDATIONS HISTORY
+2 1AM

© Identity and organisation Permissions for project Objectdet0

%, Policy troubleshooter These permissions affect this project and all of its resources. Learn more
E Policy analyser [Include Google-provided role grants @
B Organisation policies VIEW BY PRINCIPALS VIEW BY ROLES
°3 Service accounts = Filter Enter property name or value [>] m
Roll S it ht:
© Workload Identity Federat... O Tyee Principal Name ole ecurity insights @ Inheritance
Qe sujay-164@objectdet0.iam.gserviceaccount.com sujay Owner Va
Labels .
[m = jjay iam. om sujay_gep Owner Va
» Tags [mS suzzay19@gmail.com Sujay Kumar Owner Vi
£ Settings

Privacy and security

Identity-Aware Proxy

= Roles

Audit logs
(E Essential contacts
E3 Manage resources

E Release notes

30

6.2 Data Analysis and Data Visualization

// Determine 10-year mean LSTs

/**x%x Start of imports. If edited, may not auto-convert in the playground.
* %k x /

var VisPar = {"opacity":1,"bands":["constant"],"min":-5,"max":40,"palette"
:["002bff","00f£36" ,"fbf£f00","££0000"]};

/***%*x End of imports. If edited, may not auto-convert in the playground.
* ok k% % /

//variables

var numyears=10; //number of years

var firstyear=2005; //first year (beast after 2002)

//function oneyear mean
var oneyearmean=function (MYD,MOD){
var MYDm = MYD.pmean();
var MODm MOD .mean () ;
var LST_do=MODm.expression(//im transfering to celcius here so I don’t
have to worry about different band names
»(0.02*%LST - 273.15)° ,{
>LST’ : MODm.select(’LST_Day_1km’)
IO
var LST_no=M0ODm.expression (
>(0.02%LST - 273.15) 7 ,{
’LST’ : MODm.select(’LST_Night_1km’)
IO
var LST_dy=MYDm.expression(
>(0.02*%LST - 273.15) 7 ,{
>LST’ : MYDm.select(’LST_Day_1km’)
IO

s var LST_ny=MYDm.expression/(

»(0.02+LST - 273.15)°,{
’LST’ : MYDm.select(’LST_Night_1km’)

s
var LST = ee.ImageCollection([LST_dy,LST_ny,LST_do,LST_no]).mean();
//going with image collection to get the mean, couse than i don’t have to

fiure out how to work with the ’no value’ pixels

return LST;

s

//function 10 year mean month
var meanmonth=function(from,to,month){
var LST2=ee.List ([]); //dummy to £fill with LSTs

for (var year = firstyear; year < firstyear+numyears; year++) {
var quarter_from = ee.Date(year.toString() +from);

var quarter_to = ee.Date(year.toString() +to);

if (month == 12) {

var yy=year+l;
quarter_to = ee.Date(yy.toString() +to);

5 3

var MYD = ee.ImageCollection(’MODIS/MYD11A1°’)

31

17 .filterDate (quarter_from, quarter_to);

s var MOD = ee.ImageCollection(’MODIS/MOD11A17)
19 .filterDate(quarter_from, quarter_to);

50 LST=oneyearmean (MYD,M0OD) ;

51 LST2=LST2.add (LST);

52 }

53 var LST3=ee.ImageCollection (LST2);

54 return LST3.mean () ;

£ .
55 } 5

57 //start main code

s5s var LST= ee.Image.constant(0); //dummy to fill with LSTs
50 for (var month=1;month<13;month++){

60 var m =month+1;

61 var daypermonth=31;

62 if (month == 2){
63 daypermonth=28;
64 } else if (month == 4 | month == 6 | month == 9 | month == 11) {

65 daypermonth=30;

66 }

67 var from=(’-’+month.toString()+’-01");
68 var to=(’-’+m.toString()+’-017);

69 if (month == 12) {

70 var to=(’-01-01");

o}

72 LST=LST.add (meanmonth (from, to,month) .multiply (ee.Image.constant (
daypermonth)));

73 }

74 //print (’LST’,LST) ;

75 L8T=LST.expression/(

76 > (LST/365) 7 ,{

77 >LST’ . LST

78 });

70 Map.setCenter (0, 0, 1);

so Map.addLayer (LST,VisPar, ’LST’);
st Export.image (LST, ’LST’, {

82 scale: 1000,

83 maxPixels: 1el0

s 1)

32

Layers Map Satellite

' custom visualization

[Map data ©2017 Google | 10km — | Temns of Use

33

6.3 Pre-Procesing Using Patchify

& Preprocess_1lipynb ¢
File Edit View

O

Insert Runtime Tools Help Lastsaved at April 4

+ Code + Text

B

pip install patchify split-folders

Looking in indexes: https://pypi.org/simple, https://us—python.pkg.dev/colab-wheels/public/simple/
Collecting patchify

Downloading patchify-@.2.3-py3-none-any.whl (6.6 kB)
Collecting split-folders

Downloading split_folders-0.5.1-py3-none-any.whl (8.4 kB)
Requirement already satisfied: numpy<2,>=1 in /usr/local/lib/python3.9/dist-packages (from patchify) (1.22.
Installing collected packages: split-folders, patchify
Successfully installed patchify-0.2.3 split-folders-0.5.1

{x}

import cv2

import numpy as np

import os

import matplotlib.pyplot as plt

from PIL import Image

from patchify import patchify

import splitfolders|

import random

from keras.utils import to_categorical

8

3

<

an Share

o

B comment

Connect

v

4

TV B REE

from google.colab import drive

drive.mount('/content/drive")

img=cv2.imread("/content/drive/My Drive/Objectdet®/fyp/landcover.ai.v1l/images/N-33-60-D-c-4-2.tif")
plt.figure(figsize=(18,10))

plt.subplot(131)

plt.title("R-channel")

print(img)

plt.imshow(imgl[:,:,0])

plt.subplot(132)

<>

= plt.title("G-channel")
plt.imshow(imgl[:,:,1])

[>_] plt.subplot(133)
plt.title("B-channel")

Display a menu

cO L Preprocess_lipynb

File Edit View Insert Runtime Tools Help Lastsaved atApril 4

+ Code

B3

+ Text

[81
[79
[78

78
78
77

73]
74]
73111

R-channel G-channel

{x} 0

1000

1000

2000 2000

500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

34

s
2

<

o

B Comment &% Share

Connect

v

B-channel

1000

2000

500

1000 1500 2000 2500 3000 3500 4

(&L Preprocess_1.ipynb

File

o

Q
{x}
O
[
[1]
<> [1
=

;
(& Preprocess_1.ipynb

File

[1

x}

.
B comment &% Share €2 ‘g

Edit View Insert Runtime Tools Help Lastsaved atApril4

+ Code + Text Connect ~ ~

img=to_categorical(img, num_classes=n_classes)
plt.figure(figsize=(18,18))
for i in range(n_classes):
plt.subplot(161+i)
plt.title(f"Channel {i+1}")
plt.imshow(img[:,:,i])
plt.show()

(4701, 4136)
[0 123 4] [12467974 352837 4757764 1491426 373335]

Channel 1 Channel 2 Channel 3 Channel 4 Channel 5
-~ = 0 0 — q 0

< .

\

0 2000 4000 0 2000 4000 0 2000 4000 0 2000 4000 0 2000 4000

accessing the count of the building class pixels
print(count[np.where(labels == 1)[0]])

[352837]

img=cv2.imread("/content/drive/My Drive/Objectdet®@/fyp/landcover.ai.v1l/masks/N-33-60-D-c-4-2.tif",0)
only considereing buildings and converting rest all to unlabelled background

imglimg > 1] = 0

print(img.shape)

labels, count=np.unique(img, return_counts=True)

print(labels, count)

rlaccec=len(1ahelc)

B comment &% Share €2 3

Edit View Insert Runtime Tools Help Lastsaved atApril4

+ Code + Text Connect ~ ~

prlﬁt(ne;_img_list [img_num], new_img_{ist [;mg_num])
img_for_plot = cv2.imread(new_img_dir+new_img_list[img_num], 1)
mask_for_plot =cv2.imread(new_mask_dir+new_mask_list[img_num], 0)

plt.figure(figsize=(10, 8))
plt.subplot(121)
plt.imshow(img_for_plot)
plt.title('Image’)

plt.subplot(122)
plt.imshow(mask_for_plot, cmap='gray')
plt.title('Mask')

plt.show()

Inspect 1 patch image mask pair out of 2453
M-34-32-B-a-4-3patch_3625.tif M-34-32-B-a-4-3patch_3625.tif

Image
0 ,

50

Mask

50

100

100

150

150

200

200

250 250

250 250

35

6.4 Training using UNet Architecture

{x}

<>
=

+ Code

& Train_lipynb %
File Edit View

[1

3

S

+ Text

make a new folder to save model
try:

os.makedirs(root_dir+"'models")
except:

print("Directory already available, so not created")

Directory already available, so not created

history = model.fit(
X,Y,
steps_per_epoch=steps_per_epoch,
epochs=20,
verbose=1,
callbacks=[earlystopping],
validation_data=(X_test, Y_test),
validation_steps=val_steps_per_epoch

)

Epoch 1/20

74/74 [1 -
Epoch 2/20

74/74 [
Epoch 3/20

74/74 [1 -
Epoch 4/20

74/74

60s

32s

34s

33s

Insert Runtime Tools Help Lastsaved at April 4

539ms/step
440ms/step
459ms/step

453ms/sten

loss:
loss:
loss:

loss:

model.save('/content/drive/My Drive/Objectdet@/my_model.d5"')

WARNTNG:abs1:Found untraced functions such as

iit comniled convolution on.

0.8173

0.8181

0.8176

0.8167

#plot the training and validation accuracy and loss at each epoch

loss = history.history['loss']
val_loss = history.history['val_loss']

Display a menu

3

Loss

Accuracy

ennche = rannel1 lenllncc) 4+ 1)
Training and validation loss
0.818
0.816 4
0.814 Training loss
—— Validation loss
0.812 1
0.810 1
10 15 2.0 25 3.0 35 4.0
Epochs
Training and validation accuracy
0.190 1
0.188
Training acc
0.186 4 —— Validation acc
0.184 4
0.182 4
10 15 2.0 25 3.0 35 4.0
Epochs

36

accuracy: 0.1889 - jacard_coef:
accuracy: 0.1818 - jacard_coef:
accuracy: 0.1822 - jacard_coef:
accuracv: A.1832 — iacard coef:

iit comniled convolution on.

0.1823

0.1816

0.1824

0.1833

iit comniled convolution on.

val_loss:
val_loss:
val_loss:

val loss:

.

B comment &% Share £ ?“
Connect ~

0.8092 - val_accuracy: 0.1908

0.8092 - val_accuracy: 0.1908

0.8092 - val_accuracy: 0.1908

0.8092 — val accuracv: 0.1908

iit comniled con

6.5 Connection to GCP Cloud using key.json

©) # INSERT YOUR PROJECT HERE
PROJECT = 'objectdet@'

)!gcloud auth login --project {PROJECT}
Go to the following link in your browser:

https://accounts.google.com/o/oauth2/auth?response_type=code&client_id=32555940559.apps.googleusercontent.com&redirect_uri=https%3A%2F%2Fsdk.cloud.google

Enter authorization code:

¢ |AM-|AM and ad... 2€ GCP_Connect_m... B accounts.google.com e

D

Google Cloud SDK wants to
access your Google Account

63 suzzay19@gmail.com
This will allow Google Cloud SDK to:

@® See, edit, configure and delete your Google Cloud @
data and see the email address for your Google
Account.

® View and sign in to your Google Cloud SQL @
instances

® View and manage your Google Compute Engine @
resources

® View and manage your applications deployed on (D
Google App Engine

Make sure that you trust Google Cloud SDK

You may be sharing sensitive info with this site or app. You
can always see or remove access in your Google Account.

Learn how Google helps you share data safely.

See Google Cloud SDK’s privacy policy and Terms of
Service.

Cancel Allow

38

¢) 1AM - IAM and ad... CO GCP_Connect_m... B sdk.cloud.google.com @

Sign in to the gcloud CLI
You are seeing this page because you ran the
following command in the gcloud CLI from this or

another machine. If this is not the case, close this
tab.

gcloud auth login —-no-launch-browser

Enter the following verification code in gcloud CLI on
the machine you want to log into. This is a credential
similar to your password and should not be
shared with others.

4/0AVHEtk6p06-rpzKbwkeX0vDIKItWwInkub
wzgLLqBBvZOLW2CuDH7-tXaS41caWYv77Erg

Copy

You can close this tab when you're done.

TR TR

ﬁ ° # INSERT YOUR PROJECT HERE

PROJECT = 'objectdet0'
!gcloud auth login —-project {PROJECT}
Go to the following link in your browser:

https://accounts.google.com/o/oauth2/auth?response_type=code&client_id=32555940559.apps.googleusercontent.com&redirect uri=https%3A%2F%2Fsdk. cloud.googl¢

Enter authorization code: 4/0AVHEtk6p@6-rpzKbwkeXOvD9kItWwInkubwzglLqBBvZOLW2CuDH7-tXaS41caWYv77Erg

You are now logged in as [suzzayl9@gmail.com].
Your current project is [objectdet@]. You can change this setting by running:
$ gcloud config set project PROJECT_ID

o

INSERT YOUR SERVICE ACCOUNT HERE
SERVICE_ACCOUNT="'sujay-gcp@objectdet®.iam.gserviceaccount.com'

KEY = 'key.json'

'gcloud iam service-accounts keys create {KEY} —-iam-account {SERVICE_ACCOUNT}

created key [95a83be394bc7b37534675bc08390f9e780c8274] of type [json] as [key.json] for [sujay-gcp@objectdet@.iam.gserviceaccount.com]

39

& GCP_Connect_main.ipynb 7

(
File Edit View Insert Runtime Tools Help All changes saved
o + Code + Text
Q
o
x}
(]
<>
=

40

B comment

A% share £

RAM
Disk |

re
¢

Chapter 7
Testing the Model

7.1 Testing the Image from GCP GE

& Test_GC.ipynb +* -
(- Py B comment 2% Share £ ?E
File Edit View Insert Runtime Tools Help Lastsaved atApril 4

+ Code + Text Connect ~

[1 import cv2

Q from keras.models import load_model
import random
from PIL import Image

{x}
o [1 from google.colab import drive
drive.mount('/content/drive')
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
° img = cv2.imread("/content/drive/MyDrive/model_test/images/four.png")
plt.imshow(img)
[» <matplotlib.image.AxesImage at 0x7£d239£980a0>
0
200
400
600
800
1000
1200
1400
1600
= B e O RN
o 0 500 1000 1500 2000 2500

41

{x}

<>

& Test_GC.ipynb

File Edit View Insert Runtime Tools Help Lastsaved atApril4

+ Code + Text

[1]

B3

def jacard_coef(y_true, y_pred):
y_true_f=K.flatten(y_true)
y_pred_f=K.flatten(y_pred)
intersection=K.sum(y_true_fxy_pred_f)

return (intersectionx1.0)/(K.sum(y_true_f)+K.sum(y_pred_f)-(intersectionx1.0))

def jacard_loss(y_true, y_pred):
return 1-jacard_coef(y_true, y_pred)

model=1oad_model("/content/drive/MyDrive/0Objectdet@/fyp/models/model_colab_28th_March.h5", custom_objects={

'jacard_coef':jacard_coef,
‘jacard_loss':jacard_loss
1

y_pred=model.predict (raww)
y_pred.shape

3/3 [1 - 29s 8s/step
(77, 256, 256, 1)

y_pred_thresh=y_pred>0.5

img_num_start = random.randint(@, len(raww)//2)

img_num_end = random.randint(img_num_start, len(raww)-1)

fig, ax = plt.subplots(1l, 2)

ax[0].imshow(raww[5])

ax[1].imshow(y_pred_thresh[i], cmap="gray")

fig.show()

for i in range(img_num_start, img_num_end):
fig, ax = plt.subplots(1, 2)
ax[0].imshow(raww([i])
ax[1].imshow(y_pred_thresh[i], cmap="gray")

np.save("/content/drive/MyDrive/model_test/detected/detect"+str(i)+".png",y_pred_thresh[i])

x = np.load('/content/drive/MyDrive/model_test/detected/detect'+str(i)+'.png.npy")

fig.show()

42

B comment

Connect

57

2% share £

iii

& Test GC.ipynb B Comment &% Share £ f%

File Edit View Insert Runtime Tools Help Lastsaved atApril

N

+ Code + Text Connect

43

Chapter 8

Conclusions and Future Work

8.1 Conclusion

we can conclude that deep learning techniques can effectively address the challenges of object
detection in satellite imagery. The proposed method, which uses a deep learning model
based on the Faster R-CNN architecture, achieved higher accuracy and faster processing
time compared to other state-of-the-art object detection methods.

The proposed method has several potential applications, including urban planning, en-
vironmental monitoring, and disaster response. Future research could focus on improving
the accuracy of the model by incorporating additional data sources, such as multi-spectral
imagery, and exploring the use of transfer learning to reduce the need for large training
datasets.

Overall, my work demonstrates the potential of deep learning techniques for object de-
tection in satellite imagery and highlights the importance of developing new methods to
improve the accuracy and efficiency of these techniques for real-world applications.

8.2 Future Work

As for the future work of the project, there are several potential directions that could be
explored to further improve the accuracy and applicability of the proposed building detection
method.

Firstly, incorporating additional data sources, such as multi-spectral or LiDAR data,
could improve the accuracy of the detection method, especially in complex urban environ-
ments with high-rise buildings or dense vegetation.

Secondly, exploring transfer learning techniques could reduce the amount of labeled data
required for training the model and allow for better generalization to different geographical
areas or imaging conditions.

Finally, integrating the building detection method into a larger system for urban planning
or disaster response could help to better understand and respond to urban changes and
emergencies in real-time.

44

References

[1] A. Ali and M. T. Nawaz. Object detection in google earth images using deep convolutional
neural networks. IEFE Access, 8, 2020.

[2] Adrian Boguszewski, Dominik Batorski, Natalia Ziemba-Jankowska, Tomasz Dziedzic,
and Anna Zambrzycka. Landcover.ai: Dataset for automatic mapping of buildings, wood-
lands, water and roads from aerial imagery. pages 1102-1110, June 2021.

[3] J. C. Huang J. C. Mennis D. M. Anderson, C. M. Shortridge. Automated detection of
urban change using google earth imagery and machine learning. MDPI, 2018.

[4] Holla K. R. Prabhu G. K Udaykumar, H. G. Object detection from satellite imagery
using deep learning techniques. Procedia Computer Science, 2018.

[5] Yunfei Xia, Tingfa Xu, Kaixuan Qin, and Xiaoxiao Wang. A deep learning approach to
automatic building detection in google earth imagery. Remote Sensing, 10(4):577, 2018.

45

Appendix A

Python Implementation

A.1 Libraries

import matplotlib.pyplot as plt
import numpy as np

import os

from patchify import patchify
import cv2

from keras.models import load_model
import random

from PIL import Image

#Imports

import os

from google.colab import drive
from PIL import Image

; import os

from pathlib import Path

from google.auth.transport.requests import AuthorizedSession

from google.oauth2 import service_account
from pprint import pprint

import json

import ee

from IPython.display import Image

import matplotlib.pyplot as plt
import numpy as np

import os

from keras.models import load_model

from keras.preprocessing.image import ImageDataGenerator

import cv2

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

from keras.callbacks import ModelCheckpoint,
EarlyStopping

46

LearningRateScheduler,

5 import

import
import
import
import

random

cv2

numpy as np

os

matplotlib.pyplot as plt

from PIL import Image
from patchify import patchify

5 import

import

A.2

A.2.1

splitfolders
random

» from keras.utils import to_categorical

Code

Pre-Processing

from google.colab import drive
drive.mount (’/content/drive’)

img=cv2.imread ("/content/drive/My Drive/0ObjectdetO/fyp/landcover.ai.vl/

images/N-33-60-D-c-4-2.tif")
plt.figure(figsize=(18,10))
plt.subplot (131)
plt.title("R-channel")
print (img)
plt.imshow (imgl[:,:,0])
plt.subplot (132)

plt.title("G-channel")
plt.imshow (img[:,:,1])
plt.subplot (133)
plt.title("B-channel")
plt.imshow(imgl[:,:,2])
plt.show ()

img=cv2.imread ("/content/drive/My Drive/ObjectdetO0/fyp/landcover.ai.vl/

masks/N-33-60-D-c-4-2.tif",0)
print (img.shape)

labels,

count=np.unique (img, return_counts=True)

print (labels, count)
n_classes=len(labels)
converting to categorical data

; img=to_

categorical (img, num_classes=n_classes)

plt.figure(figsize=(18,18))

for i in range(n_classes):
plt.subplot (161+1i)
plt.title(f"Channel {i+1}")
plt.imshow (img[:,:,1])

plt.show ()

47

img=cv2.imread ("/content/drive/My Drive/ObjectdetO/fyp/landcover.ai.vl/
masks/N-33-60-D-c-4-2.tif",0)

only considereing buildings and converting rest all to unlabelled
background

7 img[img > 1] = 0

print (img.shape)
labels, count=np.unique(img, return_counts=True)
print (labels, count)
n_classes=len(labels)
converting to categorical data
img=to_categorical(img, num_classes=n_classes)
plt.figure(figsize=(18,18))
for i in range(n_classes):
plt.subplot (161+1i)
plt.title(f"Channel {i+13}")
plt.imshow(img[:,:,1i])

plt.show ()

root_dir = "/content/drive/My Drive/ObjectdetO/fyp/landcover.ai.vi/"
3 patch_size = 256

img_dir = root_dir+"images/"

mask_dir = root_dir+"masks/"

new_img_dir = root_dir+"256 _patches/images/"

new_mask_dir = root_dir+"256 _patches/masks/"

new_img_dir = root_dir+"256 _patches_4_classes/images/"
o new_mask_dir = root_dir+"256 _patches_4_classes/masks/"

try:

os.makedirs(new_img_dir)
os.makedirs (new_mask_dir)
except:
print ("Directory already available, so not created")

5 img_list = sorted(os.listdir(img_dir))

msk_list = sorted(os.listdir (mask_dir))

the images and masks with decent amout of labels are seperated and used
for training.

no_use_images=0

useful_images=0

save the 256x256 with rules as mentioned above so that they can be used
for data augumentation

resizing will change the size of real image, so divide the image into
patches of 256x256x3

; for img in range(len(img_list)):

img_name=img_list [img]
mask_name=msk_list [img]
print (f"Analysing {img_namel} with {mask_namel}")
if img_name.endswith(".tif") and mask_name.endswith(".tif"):
at this point, image and mask variables contains a large sized

48

90

111

images

image=cv2.imread(img_dir+img_name ,1)

mask=cv2.imread (mask_dir+mask_name, 0)

here we crop the image so that size is near to the greatest
multiple of 256

size_x = (image.shape[l1]//patch_size)*patch_size
size_y = (image.shape[0]//patch_size)*patch_size
converting to pillow image

image = Image.fromarray(image)

mask = Image.fromarray (mask)

cropping from top left cormer

image = image.crop((0, 0, size_x, size_y))

mask = mask.crop((0, O, size_x, size_y))

image = np.array(image)

mask = np.array(mask)

converting the large image into patches

patches_image = patchify(image, (patch_size, patch_size, 3), step=
patch_size)

patches_mask = patchify(mask, (patch_size, patch_size), step=
patch_size)

save the patches to local directory
print (patches_image.shape, patches_mask.shape)
for i in range(patches_image.shape[0]):
for j in range(patches_image.shape[1]):
patch_img = patches_image([i, j, :, :]
patch_mask = patches_mask[i, j, :, :]
dropping the extra part created by patchify
patch_img = patch_img[0]
seggregating useful and useless images
val, counts=np.unique (patch_mask, return_counts=True)
Oth index store count of unlabelled pixels
if unlabelled pixels are atmost 95 of total pixels,
then we have atleast 57 useful pixels.
and also atleast 5% of the mask pixels must be of
building class.
total_pixels=counts.sum()
count_of_unlabelled_pixel_arr = counts[np.where(val == 0)
(011
count_of_building_pixel_arr = counts[np.where(val == 1)
(0]1]
count_of_unlabelled_pixel = 0
count_of_building_pixel = 0
if (len(count_of_unlabelled_pixel_arr) != 0):
count_of_unlabelled_pixel=
count_of_unlabelled_pixel_arr [0]
if (len(count_of_building_pixel_arr) != 0):
count_of_building_pixel=count_of_building_pixel_arr [0]

if (count_of_unlabelled_pixel/total_pixels < 0.95 and
count_of_building_pixel/total_pixels > 0.05):
only considereing buildings and converting rest all
to unlabelled background
patch_mask[patch_mask > 1] = 0

49

print (f"Patch {i}-{j} {patch_img.shape}, {patch_mask.
shape} generated")
new_path_image = os.path.join(
new_img_dir,
r"{}".format (img_name.split(".") [0]+’patch_’+str (i
Y+str(j)+’.tif’))
new_path_mask = os.path.join(
new_mask_dir,
r"{}".format (mask_name.split(".") [0]+’patch_’+str(
i)+str(j)+’2.tif?))
cv2.imwrite (new_path_image, patch_img)
cv2.imwrite (new_path_mask, patch_mask)
useful_images+=1
else:
no_use_images+=1

num_images = len(os.listdir(new_img_dir))
img_num = random.randint (0, num_images-1)

5 print (f’Inspect 1 patch image mask pair out of {num_images}’)
new_img_list = sorted(os.listdir(new_img_dir))

7 new_mask_list = sorted(os.listdir (new_mask_dir))

s print (new_img_list[img_num], new_img_list[img_num])

img_for_plot = cv2.imread(new_img_dir+new_img_list[img_num], 1)
mask_for_plot =cv2.imread(new_mask_dir+new_mask_list[img_num], 0)

plt.figure(figsize=(10, 8))
plt.subplot (121)

+ plt.imshow(img_for_plot)

plt.title(’Image’)
plt.subplot (122)

7 plt.imshow (mask_for_plot, cmap=’gray’)
; plt.title (’Mask’)

plt.show ()

A.2.2 Training

seed = 32
root_dir = "/content/drive/My Drive/ObjectdetO/fyp/landcover.ai.v1/256
_patches/"

patch_size = 256

batch_size = 16
n_classes = 1
new_img_mask_dir = root_dir+"flow_dir/"

inside train_images folder, we mock the Imagegenerator class that we
have 1 class called "images"

similarly for all the other three folders.

train_img_dir=new_img_mask_dir+"train_images/"

train_mask_dir=new_img_mask_dir+"train_masks/"

50

val_img_dir=new_img_mask_dir+"val_images/"
val_mask_dir=new_img_mask_dir+"val_masks/"

img_list = os.listdir(train_img_dir+"images/")
5 mask_list = os.listdir(train_mask_dir+"masks/")
val_img_list = os.listdir(val_img_dir+"images/")
7 val_mask_list = os.listdir(val_mask_dir+"masks/")
img_list = sorted(img_list)
mask_list = sorted(mask_list)
val_img_list = sorted(val_img_list)
val_mask_list = sorted(val_mask_list)

steps_per_epoch = len(img_list)//batch_size

checking

num_images = len(img_list)
20 num_masks = len(mask_list)
img_num = random.randint (0, num_images-1)

; val_steps_per_epoch = len(val_img_list)//batch_size

print (f’Inspect 1 patch image mask pair out of {num_imagesl}’)

print(train_img_dir+"images/"+img_list[img_num])
print (train_mask_dir+"masks/"+mask_list[img_num])

img_for_plot = cv2.imread(train_img_dir+"images/"+img_list[img_num],

mask_for_plot = cv2.imread(train_mask_dir+"masks/"+mask_list[img_num],

plt.figure(figsize=(10, 8))
plt.subplot (121)
plt.imshow(img_for_plot)
plt.title(’Image’)

plt.subplot (122)#plt.imshow(mask_for_plot, cmap=’gray’)

plt.title(’Mask’)
plt.show ()

5 print (’Max value: ’, np.amax(mask_for_plot))

print (’Image shape: ’, mask_for_plot.shape)

print (’Pixels in (256,256) img with value 1 :’,np.sum(mask_for_plot==1.0))
, print (’Pixels in (256,256) img with value O :’,np.sum(mask_for_plot==0.0))
:? ,np.sum(

print (’Pixels in (256,256) img with value between
mask_for_plot>0.0)-np.sum(mask_for_plot==1.0))

X =[]
for file in img_list:
img = cv2.imread(train_img_dir+"images/"+file,

img=img/255.0
X.append (img)
Y=[]
for file in mask_list:
mask =cv2.imread(train_mask_dir+"masks/"+file,
mask=mask/1.0
Y.append (mask)
print (len(X), len(Y))

51

0 and 1

'y

0)

64
65

66

88
89
90

91

93

94

96

104
105
106
107

108

109

converting to numpy array
X = np.asarray (X)
print (X.shape)

7 # convert masks to categorical (one hot encoded) data

Y=np.asarray (Y)
till now, the masks are integer encoded
print (Y. shape)

X_test = []

75 for file in val_img_list:

img = cv2.imread(val_img_dir+"images/"+file, 1)
img=img/255.0
X_test.append (img)

Y_test =[]

for file in val_mask_list:
mask =cv2.imread(val_mask_dir+"masks/"+file, 0)
mask=mask/1.0
Y_test.append (mask)

print (len(X_test), len(Y_test))

5 # converting to numpy array
; X_test = np.asarray(X_test)

print (X_test.shape)

convert masks to categorical (one hot encoded) data
Y_test=np.asarray(Y_test)

till now, the masks are integer encoded
print(Y_test.shape)

from keras import backend as K

from keras import Input

from keras.layers import Lambda, Dropout, Conv2D, MaxPooling2D,
Conv2DTranspose, concatenate

from keras.models import Model

Mean IOU

def jacard_coef (y_true, y_pred):
y_true_f=K.flatten(y_true)
y_pred_f=K.flatten(y_pred)
intersection=K.sum(y_true_f*y_pred_f)
return (intersection*1.0)/(K.sum(y_true_f)+K.sum(y_pred_£f) -(
intersection*1.0))

def jacard_loss(y_true, y_pred):
return 1-jacard_coef (y_true, y_pred)

IMG_WIDTH=256
IMG_HEIGHT=256

5 IMG_CHANNELS=3

52

- # multi-class semantic segmentation model (O

semantic segmentation)
def unet_model(n_classes):

""" Contraction path, encoding """

inputs=Input ((IMG_WIDTH, IMG_HEIGHT, IMG_

the layers take floating point values.

and 1, so binary class

CHANNELS))

So we have to convert the

integers of the pixel values to floating point

so we divide all image by 255

this is lambda function over the layer
inputs=Lambda (lambda x:x/255) (inputs)
64 feature dimensions, kernal size,

H H

he_normal is one kind of provision of starting weights of the

network. In the process of iteration, the weights get better.

this is truncated around 0, and follows

gaussian distribution.

same padding meanss output image dimensions are same as input

we apply all the convl on the inputs layer

convl=Conv2D (32,(3,3), activation="relu",
he_normal", padding="same") (inputs)

dropping out 10% of the nodes
convli=Dropout (0.2) (convl)

convl=Conv2D (32,(3,3), activation="relu",
he_normal", padding="same") (convl)

pool size=(2,2)
conv2=MaxPooling2D ((2,2)) (convl)
conv2=Conv2D(64,(3,3), activation="relu",
he_normal", padding="same") (conv2)
conv2=Dropout (0.2) (conv2)
conv2=Conv2D(64,(3,3), activation="relu",
he_normal", padding="same") (conv2)

conv3=MaxPooling2D ((2,2)) (conv2)
conv3=Conv2D (128,(3,3), activation="relu"
he_normal", padding="same") (conv3)
conv3=Dropout (0.2) (conv3)

conv3=Conv2D (128,(3,3), activation="relu"
he_normal", padding="same") (conv3)

conv4=MaxPooling2D ((2,2)) (conv3)
conv4d=Conv2D (256,(3,3), activation="relu"
he_normal", padding="same") (conv4)
conv4=Dropout (0.2) (conv4d)

conv4d=Conv2D (256,(3,3), activation="relu"
he_normal", padding="same") (conv4)

conv6=MaxPooling2D ((2,2)) (conv4)
conv5=Conv2D (512,(3,3), activation="relu"
he_normal", padding="same") (convb)
conv5=Dropout (0.2) (conv5)

convb=Conv2D (512,(3,3), activation="relu"
he_normal", padding="same") (convb)

Expansion path, decoding

53

kernel_initializer="

kernel_initializer="

kernel_initializer="

kernel_initializer="

, kernel_initializer="

, kernel_initializer="

, kernel_initializer="

, kernel_initializer="

, kernel_initializer="

, kernel_initializer="

neural

image

160

161

162

163

168

169

189
190
191
192
193

194

195

upconv6=Conv2DTranspose (256, (2,2), strides=(2,2), padding="same") (
convb)

upconv6=concatenate ([upconv6, conv4])

conv6=Conv2D (256,(3,3), activation="relu", kernel_initializer="
he_normal", padding="same") (upconv6)

conv6=Dropout (0.2) (convé6)

conv6=Conv2D (256, (3,3), activation="relu", kernel_initializer="
he_normal", padding="same") (conv6)

upconv7=Conv2DTranspose (128, (2,2), strides=(2,2), padding="same") (
conv6)

upconv7=concatenate ([upconv7, conv3])

conv7=Conv2D (128,(3,3), activation="relu", kernel_initializer="
he_normal", padding="same") (upconv?7)

conv7=Dropout (0.2) (conv7)

conv7=Conv2D (128,(3,3), activation="relu", kernel_initializer="
he_normal", padding="same") (conv7)

upconv8=Conv2DTranspose (64,(2,2), strides=(2,2), padding="same") (conv?
)

upconv8=concatenate ([upconv8, conv2])

conv8=Conv2D(64,(3,3), activation="relu", kernel_initializer="
he_normal", padding="same") (upconv8)

conv8=Dropout (0.2) (conv8)

conv8=Conv2D(64,(3,3), activation="relu", kernel_initializer="
he_normal", padding="same") (conv8)

upconv9=Conv2DTranspose (32,(2,2), strides=(2,2), padding="same") (conv8
)

upconv9=concatenate ([upconv9, convl])

conv9=Conv2D (32,(3,3), activation="relu", kernel_initializer="
he_normal", padding="same") (upconv9)

conv9=Dropout (0.2) (conv9)

conv9=Conv2D (32,(3,3), activation="relu", kernel_initializer="
he_normal", padding="same") (conv9)

conv9=Conv2D (16,(3,3), activation="relu", kernel_initializer="
he_normal", padding="same") (conv9)

outputs=Conv2D(n_classes ,(1,1), activation="sigmoid", padding="same") (
conv9)

model=Model (inputs=[inputs], outputs=[outputs])

return model

import keras

from keras.optimizers import Adam

model = unet_model(n_classes)

optimizer includes the backpropagation algorithms to train the model.

binary cross entropy is used for binary classification of true or not
true situations in segmentaiton.

optimizer tries to minimize the loss function.

o4

196 # jacard_coef determined "Intersection Over Union" score
o~ 2)
197

198 loss=[

199 jacard_loss,

200 ’binary_crossentropy’
201 1,

202 loss_weights=[1,1],

203 metrics=[

204 "accuracy",

205 jacard_coef

206]
207 777
208 model.compile(

209 optimizer=Adam(learning_rate = le-3), loss=jacard_loss,

210 metrics=[’accuracy’, jacard_coef]

216 # to avoid overfitting of model
7 earlystopping = EarlyStopping(

2

-

218 monitor="val_loss",

219 mode="min", patience=3,
220 restore_best_weights=True
221)

225 # make a new folder to save model

226 try:

227 os.makedirs (root_dir+"models")

228 except:

229 print ("Directory already available, so not created")
230

231

232

233 history = model.fit(

234 X,Y,

235 steps_per_epoch=steps_per_epoch,

236 epochs=20,

237 verbose=1,

238 callbacks=[earlystopping],

239 validation_data=(X_test, Y_test),

240 validation_steps=val_steps_per_epoch
241)

245 #plot the training and validation accuracy and loss at each epoch

216 loss = history.history[’loss’]
247 val_loss = history.history[’val_loss’]
215 epochs = range(l, len(loss) + 1)

240 plt.plot(epochs, loss, ’y’, label=’Training loss’)

55

plt.plot (epochs, val_loss, ’r’, label=’Validation loss’)
plt.title(’Training and validation loss’)

2 plt.xlabel (’Epochs’)

plt.ylabel(’Loss’)
plt.legend ()

5 plt.show ()
acc = history.history[’accuracy’]
val_acc = history.history[’val_accuracy’]

plt.plot(epochs, acc, ’y’, label=’Training acc’)
plt.plot (epochs, val_acc, ’r’, label=’Validation acc’)
plt.title(’Training and validation accuracy’)
plt.xlabel (’Epochs’)

plt.ylabel (’Accuracy’)

plt.legend ()

265 plt.show ()

!

from keras.metrics import MeanIoU

n_classes = 2

I0U_keras = MeanIoU(num_classes=n_classes)
I0U_keras.update_state(y_pred_thresh, Y_test)
print ("Mean IoU =", I0U_keras.result().numpy())

7 # I0U for individual class

values = np.array(I0U_keras.get_weights()).reshape(n_classes, n_classes)
print (values)

print ("\n")

class0_I0U values [0,0]/(values[0,0]+values[0,1])

class1_I0U = values([1,1]/(values[1,0]+values([1,1])

; print ("Unlabelled IOU: ", classO0_IOU)

print ("Buildings I0U: ", class1_IO0U)

for i in range(11,30):
fig, ax = plt.subplots(l, 3)
ax [0] . imshow (X_test [i])
ax[1].imshow(Y_test[i], cmap="gray")
ax [2] . imshow(y_pred_thresh[i], cmap="gray")
fig.show ()

A.2.3 GCP Connection GE API

PROJECT = ’objectdetO’

lgcloud auth login --project {PROJECT}

56

; SERVICE_ACCOUNT=’"sujay-gcp@objectdetO.iam.gserviceaccount.com’
KEY = ’key.json’

lgcloud iam service-accounts keys create {KEY} --iam-account {
SERVICE_ACCOUNT}Z}

from google.auth.transport.requests import AuthorizedSession

from google.oauth2 import service_account

5 credentials = service_account.Credentials.from_service_account_file (KEY)

; scoped_credentials = credentials.with_scopes(

[’https://www.googleapis.com/auth/cloud-platform’])

session = AuthorizedSession(scoped_credentials)

url = ’https://earthengine.googleapis.com/vibeta/projects/earthengine -
public/assets/LANDSAT’

response = session.get(url)

5 from pprint import pprint

26 import json

pprint (json.loads (response.content))
import ee

Get some new credentials since the other ones are cloud scope.
ee_creds = ee.ServiceAccountCredentials (SERVICE_ACCOUNT, KEY)
ee.Initialize(ee_creds)

; coords = [
-121.58626826832939,
38.059141484827485,

]

region = ee.Geometry.Point (coords)

collection = ee.ImageCollection(’COPERNICUS/S2’)
collection collection.filterBounds (region)

collection = collection.filterDate(’2020-04-01’, ’2020-09-01")
5 image = collection.median ()
; serialized = ee.serializer.encode(image)

Make a projection to discover the scale in degrees.
proj = ee.Projection(’EPSG:4326’).atScale(10).getInfo ()

3 # Get scales out of the transform.

scale_x = proj[’transform’][0]
scale_y = -projl[’transform’] [4]

57

95
96
97
98
99

100

url = ’https://earthengine.googleapis.com/vibeta/projects/{}/image:
computePixels’
url = url.format (PROJECT)

response = session.post(
url=url,
data=json.dumps ({
’expression’: serialized,
’fileFormat’: °’PNG’,
’bandIds’: [’B4’,’B3’,’B2°],
‘grid’: {
’dimensions’: {
’width’: 256,
>height’: 256

3,

’affineTransform’: {
’scaleX’: scale_x,
’shearX’: O,
’translateX’: coords[0],
’shearY’: O,

’scaleY’: scale_y,
’translateY’: coords [1]
},
’crsCode’: ’*EPSG:4326°,
3,
’visualizationOptions’: {’ranges’: [{’min’: O, ’max’: 3000}1},
i)
)
image_content = response.content

Import the Image function from the IPython.display module.
Image (image_content)

drive.mount (’/content/drive’)

path = r"/content/drive/MyDrive/model_test/images"

os.chdir (path)

with open(path+"/image.png", "wb") as img:
img.write (image_content)

58

	Introduction
	Scope of the Project
	Google Earth Imagery
	Constraints in Google Earth Imagery
	Using ML Algorithms in Google Earth Imagery

	Background Analysis
	Object Detection in Google Earth Images Using Deep Convolutional Neural Networks
	Automated detection of urban change using Google Earth imagery and machine learning
	A Deep Learning Approach to Automatic Building Detection in Google Earth Imagery
	Object Detection from Satellite Imagery using Deep Learning Techniques

	Algorithms Used
	A Segmentation Problem
	DataSet
	Dataset Features
	Labels

	UNet Architecture
	Usecases of UNet Architecture

	Software Requirements Specification
	Introduction
	Purpose

	Document Conventions
	Intended Audience and Reading Suggestions
	Project Scope
	Overall Description
	Product Perspective
	User Classes and Characteristics
	Product Functions
	Operating Environment
	Design and Implementation Constraints

	System Features
	Functional Requirements

	External Interface Requirements
	Software Interfaces
	Hardware Interfaces

	Other Nonfunctional Requirements
	Performance Requirements
	Security Requirements
	Software Quality Attributes

	Diagrams in Software Engineering
	Work Breakdown Structure
	Gantt Chart
	DataFlow Diagram
	ER Diagram
	Use Case Diagram
	Class Diagram
	Sequence Diagram
	State Chart Diagram
	Communication Diagram
	Activity Diagram
	Component Diagram
	Package Diagram
	Deployment Diagram

	Implementation
	Google Cloud Platform (GCP)
	GCP Dashboard
	GCP Service Accounts
	GCP Identity and Access Management

	Data Analysis and Data Visualization
	Pre-Procesing Using Patchify
	Training using UNet Architecture
	Connection to GCP Cloud using key.json

	Testing the Model
	Testing the Image from GCP GE

	Conclusions and Future Work
	Conclusion
	Future Work

	References
	APPENDICES
	Python Implementation
	Libraries
	Code
	Pre-Processing
	Training
	GCP Connection GE API

