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Abstract

Object detection using Google Earth is a computer vision technology that utilizes state-of-
the-art deep learning models to automatically identify and locate objects of interest within
satellite or aerial imagery provided by Google Earth. The underlying algorithmic pipeline
typically involves multi-scale feature extraction, object proposal generation, and object clas-
sification and localization. This process is often executed on high-performance computing
infrastructure, such as GPU clusters, to ensure real-time or near-real-time performance.

The detection and classification of objects within satellite imagery involves several chal-
lenges, such as occlusion, varying lighting conditions, and complex background scenes. To
overcome these challenges, deep learning models, such as convolutional neural networks
(CNNs), are trained on large-scale datasets that contain annotated examples of different
object categories. These models are then fine-tuned on specific tasks, such as building de-
tection or road extraction, to improve their accuracy and efficiency.

Object detection using Google Earth has a wide range of practical applications, including
urban planning, environmental monitoring, land use mapping, and disaster response. For
example, this technology can be used to detect changes in urban infrastructure, such as new
road construction or building developments, or to identify areas affected by natural disasters,
such as floods or wildfires. Moreover, it can also support conservation efforts by enabling
the monitoring of biodiversity and deforestation rates, as well as identifying illegal activities,
such as poaching or logging.

The proposed project aims to develop an advanced AI-based software tool capable of
accurately detecting and classifying a range of real-world objects in Google Street View and
2D/3D views of Google Earth. The tool will be designed to identify ”Generic Objects” such
as cars, shops, trees, and other objects of interest, with the ultimate goal of providing rele-
vant information to clients.

To ensure the tool’s accuracy and effectiveness, the project will incorporate state-of-the-
art computer vision and deep learning techniques. Literature surveys of existing research
will be conducted to identify best practices and possible improvements. This will be followed
by a milestone plan to guide the project’s progress.

The tool’s practical applications include urban planning, environmental monitoring, land
use mapping, and disaster response. For example, it can assist in monitoring urban in-
frastructure, detecting changes in land use patterns, identifying areas affected by natural
disasters, and even monitoring illegal activities such as logging or poaching.
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Chapter 1

Introduction

1.1 Scope of the Project

The project scope involves the development of an advanced AI-based software tool for object
detection in Google Earth and Google Street View. The tool will be designed to identify and
classify various real-world objects, including cars, shops, trees, and other objects of interest.
The project will employ state-of-the-art computer vision and deep learning techniques to
ensure the tool’s accuracy and effectiveness.

The project view is to create a tool that can support various industries and domains, in-
cluding urban planning, environmental monitoring, land use mapping, and disaster response.
For example, the tool can assist in monitoring urban infrastructure, detecting changes in land
use patterns, identifying areas affected by natural disasters, and even monitoring illegal ac-
tivities such as logging or poaching. The tool will also enable clients to specify locations
of interest and request data from Google API, which will be processed and provided to the
client in a user-friendly format.

Google Earth Imagery can be used for a variety of purposes, such as urban planning,
environmental monitoring, disaster response, and tourism. For example, urban planners can
use the imagery to analyze land use patterns, identify areas for development, and assess the
impact of new construction projects on the surrounding environment. Environmentalists
can use the imagery to monitor changes in land cover, track deforestation rates, and identify
areas affected by natural disasters such as fires, floods, or landslides.

1.2 Google Earth Imagery

Google Earth Imagery is a collection of high-resolution satellite and aerial images that pro-
vide a detailed view of the Earth’s surface. This imagery is constantly updated and can
be accessed through the Google Earth platform, allowing users to explore and navigate the
planet from a bird’s-eye perspective.

The images in Google Earth Imagery are typically captured by commercial satellite com-
panies or government agencies, such as NASA or the US Geological Survey. These images
are often taken using advanced sensors and cameras, which can capture fine details and
subtle variations in the Earth’s surface, such as terrain features, vegetation, and man-made
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structures.
Google Earth Imagery covers almost the entire planet and includes both rural and urban

areas. The imagery is available in different resolutions, ranging from 15 meters per pixel
(m/p) for some parts of the world, to as high as 15 cm/p for certain urban areas. The
high-resolution imagery allows users to see details such as individual buildings, cars, and
even people.

The imagery is also a popular tool for virtual tourism, allowing users to explore famous
landmarks and tourist destinations around the world. Users can zoom in on specific locations,
tilt and rotate the view, and even explore underwater areas through the use of 3D imagery.

1.3 Constraints in Google Earth Imagery

While Google Earth Imagery offers a wealth of data and information, there are several
constraints and challenges that need to be considered. Here are some of the major ones:

1. Resolution: The resolution of Google Earth imagery can vary widely, depending on
the location and the type of imagery. In some cases, the resolution may not be high
enough to detect small objects or features of interest.

2. Cloud Cover: Cloud cover can obscure important details in Google Earth imagery,
making it difficult to obtain accurate information about certain areas.

3. Quality: Google Earth imagery quality can vary depending on the source and age of
the imagery. In some cases, the imagery may be outdated or low-quality, which can
affect the accuracy of the analysis.

4. Image distortion: Imagery can be distorted due to the terrain and the angle of the
camera when the image was captured. This can affect the accuracy of the analysis,
especially when attempting to measure distances or identify specific features.

5. Data Availability: Not all areas of the world have high-quality Google Earth imagery
available. This can limit the scope of analysis for certain regions or countries.

6. Data privacy: Google Earth imagery may capture sensitive or private information,
such as military installations or private property. Careful consideration must be given
to privacy concerns when using this data.

7. Computational resources: Processing and analyzing large volumes of Google Earth
imagery can be computationally intensive, requiring high-performance computing re-
sources and specialized software tools.

1.4 Using ML Algorithms in Google Earth Imagery

There are several potential use cases for using machine learning (ML) algorithms in Google
Earth imagery to detect rooftops.
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1. Urban planning: City planners and developers can use ML algorithms to identify
rooftops in satellite imagery to better understand the current urban landscape and to
plan future developments.

2. Disaster response: In the aftermath of natural disasters, such as earthquakes, floods,
and wildfires, ML algorithms can be used to quickly identify damaged buildings and
prioritize search and rescue efforts.

3. Energy efficiency: ML algorithms can be used to identify rooftops that are suitable
for solar panel installations, which can help to increase energy efficiency and reduce
reliance on fossil fuels.

4. Insurance: Insurance companies can use ML algorithms to assess the risk of damage
to rooftops from severe weather events, which can help to inform pricing and coverage
decisions.

5. Property assessment: Real estate companies and property assessors can use ML algo-
rithms to identify rooftops and assess the value of properties based on factors such as
size, condition, and location.

ML algorithms can help to automate the process of rooftop detection in Google Earth im-
agery, enabling faster and more accurate analysis of the data. This can lead to better
decision-making in a variety of industries and domains.
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Chapter 2

Background Analysis

2.1 Object Detection in Google Earth Images Using

Deep Convolutional Neural Networks

The paper[1] proposes a deep convolutional neural network (CNN) approach for object de-
tection in Google Earth images, particularly for detecting buildings. The paper highlights
the limitations of existing methods that rely on manual feature extraction and classification,
and proposes that deep learning techniques can improve building detection in Google Earth
images. The authors provide details of their methodology, which involves training a CNN
model on a large dataset of annotated Google Earth images, and discuss the steps involved in
preparing the dataset and training the CNN model. They then evaluate the performance of
the model using a test set of Google Earth images and compare it to existing methods. The
results show that the proposed method outperforms existing methods in terms of accuracy
and scalability, demonstrating the potential of deep learning techniques for object detection
in Google Earth imagery.

2.2 Automated detection of urban change using Google

Earth imagery and machine learning

The paper [3] provides a comprehensive review of traditional and machine learning-based
approaches for detecting urban changes using Google Earth imagery. The authors discuss
the advantages and limitations of various techniques, including image differencing, object-
based change detection, and supervised and unsupervised machine learning methods. The
authors also highlight the potential of deep learning-based methods, such as convolutional
neural networks (CNNs), for urban change detection due to their ability to learn complex
features from the images.
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2.3 A Deep Learning Approach to Automatic Building

Detection in Google Earth Imagery

The paper [5] proposed a method on a test dataset of Google Earth images and compared
its performance with other state-of-the-art methods. The results showed that their method
outperformed other methods in terms of accuracy and processing time. The paper concludes
that the proposed method has the potential to be used for various applications, including
urban planning, disaster management, and environmental monitoring. The authors suggest
that future research could focus on improving the accuracy of the model by incorporating
additional data sources, such as LiDAR and multi-spectral imagery, and exploring the use
of transfer learning to adapt the model to different geographical regions.

2.4 Object Detection from Satellite Imagery using Deep

Learning Techniques

The paper [4] presents a method for object detection from satellite imagery using deep
learning techniques. Object detection from satellite imagery faces several challenges such as
lighting variations, cloud cover, and variations in object size and orientation. To overcome
these challenges, the paper proposes a deep learning model based on the Faster R-CNN
architecture, which is trained on a large dataset of satellite imagery. The model uses a
convolutional neural network (CNN) to extract features from the input image, followed
by region proposal generation and object classification. The performance of the proposed
method was evaluated on a publicly available dataset of satellite imagery, and the results
showed that the method achieved higher accuracy and faster processing time compared to
other methods.
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Chapter 3

Algorithms Used

3.1 A Segmentation Problem

Image segmentation is a process of dividing a digital image into multiple segments or regions,
each of which corresponds to a distinct object or part of the image. The goal of image seg-
mentation is to simplify the image representation by partitioning it into meaningful regions,
which can then be used for analysis, manipulation, or understanding.

There are several methods for image segmentation, including thresholding, edge detec-
tion, region growing, clustering, and machine learning-based methods. Thresholding is a
simple method that segments an image by setting a threshold value and classifying pixels
based on whether they are above or below the threshold. Edge detection methods identify
boundaries between regions by detecting sharp changes in image intensity. Region growing
methods start from a seed point and iteratively add neighboring pixels that meet certain
criteria. Clustering methods group pixels based on their similarity in feature space. Ma-
chine learning-based methods use algorithms such as decision trees, random forests, and deep
neural networks to learn the mapping between image features and segment labels

3.2 DataSet

Segmented Labels are available in [2] The LandCover.ai (Land Cover from Aerial Imagery)
dataset is a dataset for automatic mapping of buildings, woodlands, water and roads from
aerial images.

3.2.1 Dataset Features

1. land cover from Poland, Central Europe

2. three spectral bands - RGB

3. 33 orthophotos with 25 cm per pixel resolution ( 9000x9500 px)

4. 8 orthophotos with 50 cm per pixel resolution ( 4200x4700 px)

5. total area of 216.27 km2

6



3.2.2 Labels

1. classes: building (1), woodland (2), water(3), road(4)

2. areas: 1.85 km2 of buildings, 72.02 km2 of woodlands, 13.15 km2 of water, 3.5 km2 of
roads

3.3 UNet Architecture

The U-Net architecture is a type of neural network that is commonly used for image seg-
mentation tasks. It was specifically designed for biomedical image segmentation, but has
also been used for other types of image segmentation.

What makes the U-Net architecture unique is its use of a contracting path and an expan-
sive path. The contracting path is a series of convolutional and pooling layers that reduce
the spatial resolution of the image, while also increasing the number of feature channels.
This helps the network learn high-level features from the input image.

The expansive path is a series of upsampling and convolutional layers that increase the
spatial resolution of the image, while reducing the number of feature channels. This helps
the network create a segmentation map that has the same spatial resolution as the input
image.
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3.3.1 Usecases of UNet Architecture

The U-Net architecture is particularly useful for segmentation problems because it can ef-
fectively capture both local and global features. The encoder network can capture global
features such as context and image-level information, while the decoder network can capture
local features such as object boundaries and fine details. The skip connections help propagate
information across the network, improving the accuracy of the segmentation. Additionally,
the U-Net architecture is computationally efficient and can be trained on relatively small
datasets, making it a practical choice for various segmentation tasks.

1. High Accuracy: The U-Net model has shown to achieve high accuracy in various
image segmentation tasks, including medical image segmentation and object detection
in satellite imagery.

2. Efficient use of data: The architecture makes efficient use of the available training data
by utilizing the skip connections. The skip connections allow the network to combine
low-level and high-level features, which helps in reducing the problem of vanishing
gradients.

3. Reduced Overfitting: The architecture uses data augmentation techniques, such as
flipping, rotating, and zooming, which helps in preventing overfitting.

4. Fast and Easy Training: The architecture is relatively easy to train, and training times
are faster compared to other complex architectures.
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4.1 Introduction

4.1.1 Purpose

The usage of Google Earth and Google Street View is not very habitated by the users.
In fact we can do many things for example Detecting Rooftops, Detection of more Heavy
Vehicles to reduce the Pollution, in these applications this product is specifically intended
for. As when the Vehicle is in transit we cannot track the vehicle in google earth because
google earth is a satelite imagery where we cannot watch live changes.According to my
research the google earth satellite imagery updates the images for every 1 to 3 years and
NASA’s Livestat project updates for every 16 days. This application is very much useful for
drones to detect the roof-tops and all other Static Objects.My tool will be an interface for
the research community for analyzing the vegetation in a particular area within a period of
2-3 years and Rooftop Detection for the drones to deploy a model and other various static
applications. My tool will be an interface for all the entities which are available and they
can use this to detect the produced Objects and this is the main concept of my model/tool.

4.2 Document Conventions

GEE Its an API Service by Google named as
Google Earth Engine.

GSV Google Street View is an API Service Pro-
vided by the GEE and it mainly concentrates
on Street Photography useful for AR/VR
Apps

Static Objects The Object which cannot be changed over
2-3 years of time like Buildings, farms and
Vegetation within a particular reach.

Tflite An Tensorflow Model which is used to Gen-
erate the Supervised Learning Approach for
the Static Object Detection

4.3 Intended Audience and Reading Suggestions

This Software Requirement Specification is for Myself for the future reference, Professor and
testers.This SRS is done according to the template given by the Professor. Issues List is
provided at the end of the document at Appendix C. Further, the discussion will provide
all the internal, external, functional, and also non-functional information about ”Object
Detection from Google Earth Images”.

10



Figure 4.1: Entire work-flow

4.4 Project Scope

The Major Stakeholders are the ...

1. User

2. GEE

3. Object Identification

4. Time

5. Tracking

GEE will take care with the communication of the satellites and takes in the data of satellite
image processing. We will only consider that processed image as the input to our model
or tool. The GEE API Service will give us an API Services where we can navigate for a
zommed in image to process the image carefully. The Service would be connected with our
System which will detect the Objects and track the motion of the detected object.
Object Identification is an Machine Learning Model which detects the objects by Open CV2
it marks the object and classifies as an provided class label.
The User communicates with the GEE Service through our interface and gives us the start-
ing co-ordinates and starting image to identify.
The Time is important because we are considering the static imagery of the Google Earth
Engine. We need the images which are useful for real time data by using various sensors but
the dataset which we use to train our data.

11



Figure 1.1 (Entire work-flow) is the overview of the project. Connection of all the entities
are dependable to each others. This gives the simple idea about the functional activities of
the project.
Google Earth Engine will be a static input for our web application because the model which
we trained for.
So, every entity is vary much interactive with each other.

The project scope for Object Detection from Google Earth Images would typically include
the following:

1. Object Detection Algorithm: Develop a computer vision algorithm to detect ob-
jects in Google Earth images using techniques such as convolutional neural networks
(CNNs), region-based convolutional neural networks (R-CNNs), and You Only Look
Once (YOLO) algorithms.

2. Image Dataset: Create or obtain a dataset of Google Earth images for training and
testing the object detection algorithm. The dataset should include a variety of different
objects in different environments and under different conditions.

3. Model Training: Train the object detection algorithm using the image dataset. This
will involve adjusting the parameters and architecture of the model until it can accu-
rately detect objects in the images.

4. Model Deployment: Integrate the trained object detection model into an application
that can be used to process Google Earth images and detect objects within them.

5. User Interface: Develop a user interface that allows users to select an image from
Google Earth, process it with the object detection model, and view the results. The
interface should be intuitive and easy to use.

6. Performance Evaluation: Evaluate the performance of the object detection model by
comparing its results to a ground truth dataset. This will involve measuring metrics
such as precision, recall, and accuracy.

7. Optimization: Optimize the performance of the object detection model by making
changes to the algorithm, dataset, or other aspects of the system as necessary.

4.5 Overall Description

4.5.1 Product Perspective

Google earth is a large system and My Tool integrates into this particular API Services for
providing various analysis of geo-spatial data. Main goal of this project is to minimize the
workflow of using drones to calculate the static data instead we can use our tool to Identify
the static objects for data analysis.
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4.5.2 User Classes and Characteristics

This Object Detection has basically 2 types of users.

• Researchers

• Business Entitites

The Researchers working on SOLAR Energy they have the very useful application to know
how much area does the each village has so we can implement it by comparatively.

The Business Entities like Amazon can use the models to detect the rooftops to deliver
the packages for per user.

4.5.3 Product Functions

The Product should be able to detect the rooftops for the drones in-order to land the package
for asset management services. If the Object is the Farming Lands then the Drone would
find the optimal point where all the agriculture sensors would be able to communicate within
the distance.

Before using the main function of the software result process, users have to be registered.
The Products primary source is the Machine Learning model. Result is the main feature of
all. It contains the Object which is marked by the Open CV2.

4.5.4 Operating Environment

The website will be operate in any Operating Environment - Mac, Windows, Linux etc.

4.5.5 Design and Implementation Constraints

As the ML model is the primary source we consider that as a Design.

• From the Unprocessed Image from the GE.

• Supervised Learning Techniques.

• Class Labels and Unsupervised Learning Techniques.

From the GE Image we need to detect the static objects and find a suitable environment
with color grading which would provide us an Undefined colored so, it acn be easily seen by
the Sensors or Microcontrollers in the Drones.

Every Image would happen to work with utmost accuracy to detect the static images.

Design and implementation constraints for object detection from Google Earth can vary
depending on the specific use case and requirements. However, some common constraints
and considerations are:
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• Image Quality: The quality and resolution of the satellite images in Google Earth can
have a significant impact on the accuracy and reliability of object detection. Poor
quality images with low resolution, or images that are obstructed by clouds or other
factors, can make it difficult to accurately detect objects.

• Object Variability: The variability of objects in satellite images can also impact the ac-
curacy and reliability of object detection. Objects may vary in size, shape, orientation,
and appearance, which can make it challenging to train object detection algorithms to
recognize them.

• Computational Resources: Object detection can be computationally intensive, and
large amounts of data need to be processed in real-time to ensure fast and accurate
results. It is important to carefully consider the computational resources required to
run the object detection algorithm, as well as the hardware and software infrastructure
required to support it.

• Data Privacy and Security: Google Earth images may contain sensitive information
that needs to be protected, and it is important to ensure that the object detection
algorithm is designed and implemented in a way that protects this information.

• Data Storage and Management: The amount of data generated by object detection
from Google Earth images can be large, and it is important to have a robust and
scalable data storage and management system in place to handle this data.

These are some of the key design and implementation constraints for object detection
from Google Earth. However, there may be additional constraints and considerations that
are specific to your use case and requirements.

4.6 System Features

4.6.1 Functional Requirements

1. The object detection software should be able to process images from Google Earth
and extract relevant information for object detection. This may involve implementing
algorithms for image pre-processing, such as image resizing, and image normalization.

2. The object detection software should be able to detect objects of interest in the images,
such as buildings, vehicles, and roadways. This may involve implementing object
detection algorithms, such as deep learning-based object detection, and training the
algorithms on annotated image data.

3. The object detection software should be able to classify the objects detected in the
images into relevant categories, such as type of building, type of vehicle, or type of
roadway. This may involve implementing object classification algorithms and training
the algorithms on annotated image data.
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4. The object detection software should be able to locate the objects in the images and
provide the coordinates of the objects. This may involve implementing object local-
ization algorithms, such as bounding box regression, and training the algorithms on
annotated image data.

5. The object detection software should be able to generate outputs, such as annotated
images or data reports, that provide information about the objects detected in the im-
ages. This may involve implementing output generation algorithms and user interfaces
for visualizing the outputs.

6. The object detection software should provide user interfaces for interacting with the
software, such as uploading images, configuring the object detection algorithms, and
viewing the outputs. This may involve implementing graphical user interfaces, com-
mand line interfaces, or application programming interfaces (APIs) for integrating the
object detection software with other software systems.

4.7 External Interface Requirements

TensorFlow Lite (TFLite) is a lightweight version of TensorFlow, designed to run on resource-
constrained devices such as mobile phones and embedded systems. The TFLite object detec-
tion model can be integrated into various external user interfaces to provide object detection
capabilities to end users. Some common external user interfaces for TFLite object detection
models are:

1. Mobile Applications

2. Web Applications

3. Embedded Systems.

4. Robotics

These are some of the external user interfaces that TFLite object detection models can be
integrated with. The specific user interface that you choose will depend on your use case
and requirements. It is important to carefully consider the requirements of your application
and the resources available on your target device when selecting an external user interface
for your TFLite object detection model.

4.7.1 Software Interfaces

1. Mobile SDKs: TFLite object detection models can be integrated into mobile software
development kits (SDKs), allowing developers to build mobile applications that perform
object detection on mobile devices.

2. Web API: TFLite object detection models can be deployed as web APIs, allowing
object detection to be performed over the internet. This can be useful for building
cloud-based object detection systems that can be accessed by a variety of clients, such
as mobile applications, web applications, and desktop applications.
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3. Robotics API: TFLite object detection models can also be integrated into robotics
APIs to provide object detection capabilities for autonomous robots.

4. Embedded API: TFLite object detection models can be integrated into embedded APIs,
allowing developers to build custom embedded systems that perform object detection.

4.7.2 Hardware Interfaces

The Google Earth API can be integrated with various hardware interfaces to provide mapping
and visualization capabilities to end users. Some common hardware interfaces for the Google
Earth API are:

1. Web Browsers: The Google Earth API can be integrated into web browsers to provide
interactive mapping and visualization capabilities to end users. This allows users to
access Google Earth in their web browsers and interact with maps and satellite imagery.

2. Embedded Systems: The Google Earth API can be integrated into embedded sys-
tems, such as GPS devices and in-vehicle navigation systems, to provide mapping and
visualization capabilities in these environments.

3. Robotics Hardware: The Google Earth API can also be integrated into robotics hard-
ware, such as autonomous robots, to provide mapping and navigation capabilities for
these systems.

These are some of the hardware interfaces that the Google Earth API can be integrated
with. The specific hardware interface that you choose will depend on your use case and
requirements. It is important to carefully consider the requirements of your application and
the resources available on your target device when selecting a hardware interface for the
Google Earth API.

4.8 Other Nonfunctional Requirements

4.8.1 Performance Requirements

The performance requirements for object detection from Google Earth images will depend
on a number of factors, including the size of the images, the complexity of the objects being
detected, the desired accuracy and speed of the object detection process, and the resources
available on the hardware platform where the object detection is being performed. Some of
the key performance requirements for object detection from Google Earth images include:

1. Computational Power: Object detection algorithms can be computationally intensive,
and therefore a powerful processing platform is necessary to perform object detection in
real-time. This may involve using high-performance CPUs, GPUs, or other specialized
hardware such as Tensor Processing Units (TPUs).
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2. Memory: Object detection algorithms require large amounts of memory to store the
image data and intermediate results of the object detection process. Therefore, the
hardware platform should have sufficient memory to support the object detection pro-
cess.

3. Network Bandwidth: If the object detection is being performed in a cloud environment,
the network bandwidth between the cloud and the client device may also be a factor
in the performance of the object detection process.

4. Latency: The latency of the object detection process is an important factor in the
overall performance of the system. Latency refers to the time it takes for an object
detection request to be processed and the results to be returned to the client. Low
latency is important for real-time applications where the results of the object detection
process need to be available immediately.

5. Accuracy: The accuracy of the object detection process is also a critical factor in
the overall performance of the system. High accuracy is important for applications
where the object detection results are used to make important decisions, such as in
autonomous vehicles or surveillance systems.

These are some of the key performance requirements for object detection from Google Earth
images. The specific performance requirements for your application will depend on the
details of your use case and the desired outcomes. It is important to carefully consider the
performance requirements of your application and the resources available on your hardware
platform when designing and implementing an object detection system from Google Earth
images.

4.8.2 Security Requirements

Security is an important consideration in any application that involves processing and storing
sensitive information, including object detection from Google Earth images. Some of the key
security requirements for object detection from Google Earth images include:

1. Data Privacy: The privacy of the image data being processed and stored must be
protected. This may involve encrypting the image data and ensuring that it is only
accessible by authorized individuals.

2. Data Integrity: The integrity of the image data must be protected to prevent unautho-
rized changes to the data. This may involve implementing data integrity checks and
audit trails to detect any unauthorized changes to the data.

3. Access Control: Access to the image data and the object detection results must be
controlled to ensure that only authorized individuals have access to the data. This
may involve implementing user authentication and authorization mechanisms, such as
usernames and passwords, to control access to the data.
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4. Network Security: The network over which the image data is transmitted and the
object detection results are returned must be secure to prevent unauthorized access to
the data. This may involve implementing encryption algorithms, such as SSL/TLS, to
secure the data transmission.

5. Physical Security: The hardware platform where the object detection is performed
must be physically secured to prevent unauthorized access to the image data and the
object detection results. This may involve implementing physical security measures,
such as security cameras, access controls, and secure data storage facilities.

These are some of the key security requirements for object detection from Google Earth
images. The specific security requirements for your application will depend on the sensitivity
of the image data and the desired level of security. It is important to carefully consider the
security requirements of your application and to implement appropriate security measures
to protect the image data and the object detection results.

4.8.3 Software Quality Attributes

Software quality attributes are characteristics of software that are important to ensure that
the software is fit for its intended use. In the context of object detection from Google Earth
images, some of the key software quality attributes include:

1. Usability: The object detection software should be easy to use and understand for the
end-users. This may involve providing clear and concise user interfaces, user-friendly
error messages, and intuitive navigation.

2. Reliability: The object detection software should be reliable and should perform its
intended functions accurately and consistently. This may involve implementing robust
error handling mechanisms, redundant components, and regular software testing.

3. Performance: The object detection software should perform efficiently and quickly,
especially for real-time applications. This may involve optimizing the algorithms for
the hardware platform, reducing latency, and improving computational performance.

4. Scalability: The object detection software should be able to handle increasing vol-
umes of image data and users without degradation in performance. This may involve
implementing scalable algorithms and architectures, load balancing, and distributed
computing.

5. Maintainability: The object detection software should be maintainable, so that it
can be updated and improved over time. This may involve writing clear and well-
documented code, using modular design patterns, and following software development
best practices.
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Chapter 5

Diagrams in Software Engineering

5.1 Work Breakdown Structure
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5.2 Gantt Chart

5.3 DataFlow Diagram
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5.4 ER Diagram
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5.5 Use Case Diagram
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5.6 Class Diagram
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5.7 Sequence Diagram

5.8 State Chart Diagram
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5.9 Communication Diagram
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5.10 Activity Diagram
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5.11 Component Diagram

5.12 Package Diagram
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5.13 Deployment Diagram
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Chapter 6

Implementation

6.1 Google Cloud Platform (GCP)

6.1.1 GCP Dashboard
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6.1.2 GCP Service Accounts

6.1.3 GCP Identity and Access Management
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6.2 Data Analysis and Data Visualization

1 // Determine 10-year mean LSTs

2

3 /**** Start of imports. If edited , may not auto -convert in the playground.

****/

4 var VisPar = {"opacity":1,"bands":["constant"],"min":-5,"max":40,"palette"

:["002 bff","00ff36","fbff00","ff0000"]};

5 /***** End of imports. If edited , may not auto -convert in the playground.

*****/

6 // variables

7 var numyears =10; // number of years

8 var firstyear =2005; // first year (beast after 2002)

9

10 // function oneyear mean

11 var oneyearmean=function(MYD ,MOD){

12 var MYDm = MYD.mean();

13 var MODm = MOD.mean();

14 var LST_do=MODm.expression( //im transfering to celcius here so I don’t

have to worry about different band names

15 ’(0.02* LST - 273.15) ’,{

16 ’LST’ : MODm.select(’LST_Day_1km ’)

17 });

18 var LST_no=MODm.expression(

19 ’(0.02* LST - 273.15) ’,{

20 ’LST’ : MODm.select(’LST_Night_1km ’)

21 });

22 var LST_dy=MYDm.expression(

23 ’(0.02* LST - 273.15) ’,{

24 ’LST’ : MYDm.select(’LST_Day_1km ’)

25 });

26 var LST_ny=MYDm.expression(

27 ’(0.02* LST - 273.15) ’,{

28 ’LST’ : MYDm.select(’LST_Night_1km ’)

29 });

30 var LST = ee.ImageCollection ([LST_dy ,LST_ny ,LST_do ,LST_no ]).mean();

31 //going with image collection to get the mean , couse than i don’t have to

fiure out how to work with the ’no value ’ pixels

32 return LST;

33 };

34

35 // function 10 year mean month

36 var meanmonth=function(from ,to ,month){

37 var LST2=ee.List ([]); // dummy to fill with LSTs

38

39 for (var year = firstyear; year < firstyear+numyears; year ++) {

40 var quarter_from = ee.Date(year.toString () +from);

41 var quarter_to = ee.Date(year.toString () +to);

42 if (month == 12) {

43 var yy=year +1;

44 quarter_to = ee.Date(yy.toString () +to);

45 }

46 var MYD = ee.ImageCollection(’MODIS/MYD11A1 ’)
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47 .filterDate(quarter_from , quarter_to);

48 var MOD = ee.ImageCollection(’MODIS/MOD11A1 ’)

49 .filterDate(quarter_from , quarter_to);

50 LST=oneyearmean(MYD ,MOD);

51 LST2=LST2.add(LST);

52 }

53 var LST3=ee.ImageCollection(LST2);

54 return LST3.mean();

55 };

56

57 //start main code

58 var LST= ee.Image.constant (0); // dummy to fill with LSTs

59 for (var month =1;month <13; month ++){

60 var m =month +1;

61 var daypermonth =31;

62 if (month == 2){

63 daypermonth =28;

64 } else if (month == 4 | month == 6 | month == 9 | month == 11) {

65 daypermonth =30;

66 }

67 var from=(’-’+month.toString ()+’ -01’);

68 var to=(’-’+m.toString ()+’ -01’);

69 if (month == 12) {

70 var to=(’ -01-01’);

71 }

72 LST=LST.add(meanmonth(from ,to ,month).multiply(ee.Image.constant(

daypermonth)));

73 }

74 //print(’LST ’,LST);

75 LST=LST.expression(

76 ’(LST /365)’,{

77 ’LST’ : LST

78 });

79 Map.setCenter(0, 0, 1);

80 Map.addLayer(LST ,VisPar ,’LST’);

81 Export.image(LST , ’LST’, {

82 scale: 1000,

83 maxPixels: 1e10

84 });
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6.3 Pre-Procesing Using Patchify
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6.4 Training using UNet Architecture
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6.5 Connection to GCP Cloud using key.json
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Chapter 7

Testing the Model

7.1 Testing the Image from GCP GE
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Chapter 8

Conclusions and Future Work

8.1 Conclusion

we can conclude that deep learning techniques can effectively address the challenges of object
detection in satellite imagery. The proposed method, which uses a deep learning model
based on the Faster R-CNN architecture, achieved higher accuracy and faster processing
time compared to other state-of-the-art object detection methods.

The proposed method has several potential applications, including urban planning, en-
vironmental monitoring, and disaster response. Future research could focus on improving
the accuracy of the model by incorporating additional data sources, such as multi-spectral
imagery, and exploring the use of transfer learning to reduce the need for large training
datasets.

Overall, my work demonstrates the potential of deep learning techniques for object de-
tection in satellite imagery and highlights the importance of developing new methods to
improve the accuracy and efficiency of these techniques for real-world applications.

8.2 Future Work

As for the future work of the project, there are several potential directions that could be
explored to further improve the accuracy and applicability of the proposed building detection
method.

Firstly, incorporating additional data sources, such as multi-spectral or LiDAR data,
could improve the accuracy of the detection method, especially in complex urban environ-
ments with high-rise buildings or dense vegetation.

Secondly, exploring transfer learning techniques could reduce the amount of labeled data
required for training the model and allow for better generalization to different geographical
areas or imaging conditions.

Finally, integrating the building detection method into a larger system for urban planning
or disaster response could help to better understand and respond to urban changes and
emergencies in real-time.
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Appendix A

Python Implementation

A.1 Libraries

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import os

4 from patchify import patchify

5 import cv2

6 from keras.models import load_model

7 import random

8 from PIL import Image

9

10

11

12 #Imports

13 import os

14 from google.colab import drive

15 from PIL import Image

16 import os

17 from pathlib import Path

18 from google.auth.transport.requests import AuthorizedSession

19 from google.oauth2 import service_account

20 from pprint import pprint

21 import json

22 import ee

23 from IPython.display import Image

24

25

26 import matplotlib.pyplot as plt

27 import numpy as np

28 import os

29 from keras.models import load_model

30 from keras.preprocessing.image import ImageDataGenerator

31 import cv2

32 from sklearn.model_selection import train_test_split

33 from sklearn.preprocessing import MinMaxScaler

34 from keras.callbacks import ModelCheckpoint , LearningRateScheduler ,

EarlyStopping
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35 import random

36

37

38

39 import cv2

40 import numpy as np

41 import os

42 import matplotlib.pyplot as plt

43 from PIL import Image

44 from patchify import patchify

45 import splitfolders

46 import random

47 from keras.utils import to_categorical

A.2 Code

A.2.1 Pre-Processing

1 from google.colab import drive

2 drive.mount(’/content/drive ’)

3 img=cv2.imread("/content/drive/My Drive/Objectdet0/fyp/landcover.ai.v1/

images/N-33-60-D-c-4-2.tif")

4 plt.figure(figsize =(18 ,10))

5 plt.subplot (131)

6 plt.title("R-channel")

7 print(img)

8 plt.imshow(img[:,:,0])

9 plt.subplot (132)

10

11 plt.title("G-channel")

12 plt.imshow(img[:,:,1])

13 plt.subplot (133)

14 plt.title("B-channel")

15 plt.imshow(img[:,:,2])

16 plt.show()

17

18

19

20 img=cv2.imread("/content/drive/My Drive/Objectdet0/fyp/landcover.ai.v1/

masks/N-33-60-D-c-4-2.tif" ,0)

21 print(img.shape)

22 labels , count=np.unique(img , return_counts=True)

23 print(labels , count)

24 n_classes=len(labels)

25 # converting to categorical data

26 img=to_categorical(img , num_classes=n_classes)

27 plt.figure(figsize =(18 ,18))

28 for i in range(n_classes):

29 plt.subplot (161+i)

30 plt.title(f"Channel {i+1}")

31 plt.imshow(img[:,:,i])

32 plt.show()
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33

34

35 img=cv2.imread("/content/drive/My Drive/Objectdet0/fyp/landcover.ai.v1/

masks/N-33-60-D-c-4-2.tif" ,0)

36 # only considereing buildings and converting rest all to unlabelled

background

37 img[img > 1] = 0

38 print(img.shape)

39 labels , count=np.unique(img , return_counts=True)

40 print(labels , count)

41 n_classes=len(labels)

42 # converting to categorical data

43 img=to_categorical(img , num_classes=n_classes)

44 plt.figure(figsize =(18 ,18))

45 for i in range(n_classes):

46 plt.subplot (161+i)

47 plt.title(f"Channel {i+1}")

48 plt.imshow(img[:,:,i])

49 plt.show()

50

51

52 root_dir = "/content/drive/My Drive/Objectdet0/fyp/landcover.ai.v1/"

53 patch_size = 256

54 img_dir = root_dir+"images/"

55 mask_dir = root_dir+"masks/"

56 # new_img_dir = root_dir +"256 _patches/images /"

57 # new_mask_dir = root_dir +"256 _patches/masks /"

58 new_img_dir = root_dir+"256 _patches_4_classes/images/"

59 new_mask_dir = root_dir+"256 _patches_4_classes/masks/"

60 try:

61 os.makedirs(new_img_dir)

62 os.makedirs(new_mask_dir)

63 except:

64 print("Directory already available , so not created")

65 img_list = sorted(os.listdir(img_dir))

66 msk_list = sorted(os.listdir(mask_dir))

67

68

69

70 # the images and masks with decent amout of labels are seperated and used

for training.

71 no_use_images =0

72 useful_images =0

73

74 # save the 256 x256 with rules as mentioned above so that they can be used

for data augumentation

75 # resizing will change the size of real image , so divide the image into

patches of 256 x256x3

76 for img in range(len(img_list)):

77 img_name=img_list[img]

78 mask_name=msk_list[img]

79 print(f"Analysing {img_name} with {mask_name}")

80 if img_name.endswith(".tif") and mask_name.endswith(".tif"):

81 # at this point , image and mask variables contains a large sized
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images

82 image=cv2.imread(img_dir+img_name ,1)

83 mask=cv2.imread(mask_dir+mask_name , 0)

84 # here we crop the image so that size is near to the greatest

multiple of 256

85 size_x = (image.shape [1]// patch_size)*patch_size

86 size_y = (image.shape [0]// patch_size)*patch_size

87 # converting to pillow image

88 image = Image.fromarray(image)

89 mask = Image.fromarray(mask)

90 # cropping from top left corner

91 image = image.crop((0, 0, size_x , size_y))

92 mask = mask.crop((0, 0, size_x , size_y))

93 image = np.array(image)

94 mask = np.array(mask)

95 # converting the large image into patches

96 patches_image = patchify(image , (patch_size , patch_size , 3), step=

patch_size)

97 patches_mask = patchify(mask , (patch_size , patch_size), step=

patch_size)

98

99 # save the patches to local directory

100 print(patches_image.shape , patches_mask.shape)

101 for i in range(patches_image.shape [0]):

102 for j in range(patches_image.shape [1]):

103 patch_img = patches_image[i, j, :, :]

104 patch_mask = patches_mask[i, j, :, :]

105 # dropping the extra part created by patchify

106 patch_img = patch_img [0]

107 # seggregating useful and useless images

108 val , counts=np.unique(patch_mask , return_counts=True)

109 # 0th index store count of unlabelled pixels

110 # if unlabelled pixels are atmost 95% of total pixels ,

then we have atleast 5% useful pixels.

111 # and also atleast 5% of the mask pixels must be of

building class.

112 total_pixels=counts.sum()

113 count_of_unlabelled_pixel_arr = counts[np.where(val == 0)

[0]]

114 count_of_building_pixel_arr = counts[np.where(val == 1)

[0]]

115 count_of_unlabelled_pixel = 0

116 count_of_building_pixel = 0

117 if(len(count_of_unlabelled_pixel_arr) != 0):

118 count_of_unlabelled_pixel=

count_of_unlabelled_pixel_arr [0]

119 if(len(count_of_building_pixel_arr) != 0):

120 count_of_building_pixel=count_of_building_pixel_arr [0]

121

122 if(count_of_unlabelled_pixel/total_pixels < 0.95 and

123 count_of_building_pixel/total_pixels > 0.05):

124 # only considereing buildings and converting rest all

to unlabelled background

125 # patch_mask[patch_mask > 1] = 0
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126 print(f"Patch {i}-{j} {patch_img.shape}, {patch_mask.

shape} generated")

127 new_path_image = os.path.join(

128 new_img_dir ,

129 r"{}".format(img_name.split(".")[0]+’patch_ ’+str(i

)+str(j)+’.tif’))

130 new_path_mask = os.path.join(

131 new_mask_dir ,

132 r"{}".format(mask_name.split(".")[0]+’patch_ ’+str(

i)+str(j)+’.tif’))

133 cv2.imwrite(new_path_image , patch_img)

134 cv2.imwrite(new_path_mask , patch_mask)

135 useful_images +=1

136 else:

137 no_use_images +=1

138

139

140

141

142

143 num_images = len(os.listdir(new_img_dir))

144 img_num = random.randint(0, num_images -1)

145 print(f’Inspect 1 patch image mask pair out of {num_images}’)

146 new_img_list = sorted(os.listdir(new_img_dir))

147 new_mask_list = sorted(os.listdir(new_mask_dir))

148 print(new_img_list[img_num], new_img_list[img_num ])

149 img_for_plot = cv2.imread(new_img_dir+new_img_list[img_num], 1)

150 mask_for_plot =cv2.imread(new_mask_dir+new_mask_list[img_num], 0)

151

152 plt.figure(figsize =(10, 8))

153 plt.subplot (121)

154 plt.imshow(img_for_plot)

155 plt.title(’Image’)

156 plt.subplot (122)

157 plt.imshow(mask_for_plot , cmap=’gray’)

158 plt.title(’Mask’)

159 plt.show()

A.2.2 Training

1 seed = 32

2 root_dir = "/content/drive/My Drive/Objectdet0/fyp/landcover.ai.v1/256

_patches/"

3 patch_size = 256

4 batch_size = 16

5 n_classes = 1

6 new_img_mask_dir = root_dir+"flow_dir/"

7 # inside train_images folder , we mock the Imagegenerator class that we

have 1 class called "images"

8 # similarly for all the other three folders.

9 train_img_dir=new_img_mask_dir+"train_images/"

10 train_mask_dir=new_img_mask_dir+"train_masks/"

50



11 val_img_dir=new_img_mask_dir+"val_images/"

12 val_mask_dir=new_img_mask_dir+"val_masks/"

13

14 img_list = os.listdir(train_img_dir+"images/")

15 mask_list = os.listdir(train_mask_dir+"masks/")

16 val_img_list = os.listdir(val_img_dir+"images/")

17 val_mask_list = os.listdir(val_mask_dir+"masks/")

18 img_list = sorted(img_list)

19 mask_list = sorted(mask_list)

20 val_img_list = sorted(val_img_list)

21 val_mask_list = sorted(val_mask_list)

22 steps_per_epoch = len(img_list)// batch_size

23 val_steps_per_epoch = len(val_img_list)// batch_size

24

25

26

27 # checking

28 num_images = len(img_list)

29 num_masks = len(mask_list)

30 img_num = random.randint(0, num_images -1)

31 print(f’Inspect 1 patch image mask pair out of {num_images}’)

32 print(train_img_dir+"images/"+img_list[img_num ])

33 print(train_mask_dir+"masks/"+mask_list[img_num ])

34 img_for_plot = cv2.imread(train_img_dir+"images/"+img_list[img_num], 1)

35 mask_for_plot = cv2.imread(train_mask_dir+"masks/"+mask_list[img_num], 0)

36

37 plt.figure(figsize =(10, 8))

38 plt.subplot (121)

39 plt.imshow(img_for_plot)

40 plt.title(’Image’)

41 # plt.subplot (122)#plt.imshow(mask_for_plot , cmap=’gray ’)

42 # plt.title(’Mask ’)

43 plt.show()

44

45 print(’Max value: ’, np.amax(mask_for_plot))

46 print(’Image shape: ’, mask_for_plot.shape)

47 print(’Pixels in (256 ,256) img with value 1 :’,np.sum(mask_for_plot ==1.0))

48 print(’Pixels in (256 ,256) img with value 0 :’,np.sum(mask_for_plot ==0.0))

49 print(’Pixels in (256 ,256) img with value between 0 and 1 :’,np.sum(

mask_for_plot >0.0)-np.sum(mask_for_plot ==1.0))

50

51

52

53 X = []

54 for file in img_list:

55 img = cv2.imread(train_img_dir+"images/"+file , 1)

56 img=img /255.0

57 X.append(img)

58 Y=[]

59 for file in mask_list:

60 mask =cv2.imread(train_mask_dir+"masks/"+file , 0)

61 mask=mask /1.0

62 Y.append(mask)

63 print(len(X), len(Y))
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64 # converting to numpy array

65 X = np.asarray(X)

66 print(X.shape)

67 # convert masks to categorical (one hot encoded) data

68 Y=np.asarray(Y)

69 # till now , the masks are integer encoded

70 print(Y.shape)

71

72

73

74 X_test = []

75 for file in val_img_list:

76 img = cv2.imread(val_img_dir+"images/"+file , 1)

77 img=img /255.0

78 X_test.append(img)

79 Y_test =[]

80 for file in val_mask_list:

81 mask =cv2.imread(val_mask_dir+"masks/"+file , 0)

82 mask=mask /1.0

83 Y_test.append(mask)

84 print(len(X_test), len(Y_test))

85 # converting to numpy array

86 X_test = np.asarray(X_test)

87 print(X_test.shape)

88 # convert masks to categorical (one hot encoded) data

89 Y_test=np.asarray(Y_test)

90 # till now , the masks are integer encoded

91 print(Y_test.shape)

92

93

94

95

96

97

98 from keras import backend as K

99 from keras import Input

100 from keras.layers import Lambda , Dropout , Conv2D , MaxPooling2D ,

Conv2DTranspose , concatenate

101 from keras.models import Model

102

103 # Mean IOU

104 def jacard_coef(y_true , y_pred):

105 y_true_f=K.flatten(y_true)

106 y_pred_f=K.flatten(y_pred)

107 intersection=K.sum(y_true_f*y_pred_f)

108 return (intersection *1.0)/(K.sum(y_true_f)+K.sum(y_pred_f)-(

intersection *1.0))

109

110 def jacard_loss(y_true , y_pred):

111 return 1-jacard_coef(y_true , y_pred)

112

113 IMG_WIDTH =256

114 IMG_HEIGHT =256

115 IMG_CHANNELS =3
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116

117 # multi -class semantic segmentation model (0 and 1, so binary class

semantic segmentation)

118 def unet_model(n_classes):

119 """ Contraction path , encoding """

120 inputs=Input((IMG_WIDTH , IMG_HEIGHT , IMG_CHANNELS))

121 # the layers take floating point values. So we have to convert the

integers of the pixel values to floating point

122 # so we divide all image by 255

123 # this is lambda function over the layer

124 # inputs=Lambda(lambda x:x/255)(inputs)

125 # 64 feature dimensions , kernal size ,

126 # he_normal is one kind of provision of starting weights of the neural

network. In the process of iteration , the weights get better.

127 # this is truncated around 0, and follows gaussian distribution.

128 # same padding meanss output image dimensions are same as input image

129 # we apply all the conv1 on the inputs layer

130 conv1=Conv2D (32,(3,3), activation="relu", kernel_initializer="

he_normal", padding="same")(inputs)

131 # dropping out 10% of the nodes

132 conv1=Dropout (0.2)(conv1)

133 conv1=Conv2D (32,(3,3), activation="relu", kernel_initializer="

he_normal", padding="same")(conv1)

134

135 # pool size =(2,2)

136 conv2=MaxPooling2D ((2,2))(conv1)

137 conv2=Conv2D (64,(3,3), activation="relu", kernel_initializer="

he_normal", padding="same")(conv2)

138 conv2=Dropout (0.2)(conv2)

139 conv2=Conv2D (64,(3,3), activation="relu", kernel_initializer="

he_normal", padding="same")(conv2)

140

141 conv3=MaxPooling2D ((2,2))(conv2)

142 conv3=Conv2D (128 ,(3 ,3), activation="relu", kernel_initializer="

he_normal", padding="same")(conv3)

143 conv3=Dropout (0.2)(conv3)

144 conv3=Conv2D (128 ,(3 ,3), activation="relu", kernel_initializer="

he_normal", padding="same")(conv3)

145

146 conv4=MaxPooling2D ((2,2))(conv3)

147 conv4=Conv2D (256 ,(3 ,3), activation="relu", kernel_initializer="

he_normal", padding="same")(conv4)

148 conv4=Dropout (0.2)(conv4)

149 conv4=Conv2D (256 ,(3 ,3), activation="relu", kernel_initializer="

he_normal", padding="same")(conv4)

150

151 conv5=MaxPooling2D ((2,2))(conv4)

152 conv5=Conv2D (512 ,(3 ,3), activation="relu", kernel_initializer="

he_normal", padding="same")(conv5)

153 conv5=Dropout (0.2)(conv5)

154 conv5=Conv2D (512 ,(3 ,3), activation="relu", kernel_initializer="

he_normal", padding="same")(conv5)

155

156 """ Expansion path , decoding """
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157 upconv6=Conv2DTranspose (256 ,(2 ,2), strides =(2 ,2), padding="same")(

conv5)

158 upconv6=concatenate ([upconv6 , conv4])

159 conv6=Conv2D (256 ,(3 ,3), activation="relu", kernel_initializer="

he_normal", padding="same")(upconv6)

160 conv6=Dropout (0.2)(conv6)

161 conv6=Conv2D (256 ,(3 ,3), activation="relu", kernel_initializer="

he_normal", padding="same")(conv6)

162

163 upconv7=Conv2DTranspose (128 ,(2 ,2), strides =(2 ,2), padding="same")(

conv6)

164 upconv7=concatenate ([upconv7 , conv3])

165 conv7=Conv2D (128 ,(3 ,3), activation="relu", kernel_initializer="

he_normal", padding="same")(upconv7)

166 conv7=Dropout (0.2)(conv7)

167 conv7=Conv2D (128 ,(3 ,3), activation="relu", kernel_initializer="

he_normal", padding="same")(conv7)

168

169 upconv8=Conv2DTranspose (64 ,(2 ,2), strides =(2 ,2), padding="same")(conv7

)

170 upconv8=concatenate ([upconv8 , conv2])

171 conv8=Conv2D (64,(3,3), activation="relu", kernel_initializer="

he_normal", padding="same")(upconv8)

172 conv8=Dropout (0.2)(conv8)

173 conv8=Conv2D (64,(3,3), activation="relu", kernel_initializer="

he_normal", padding="same")(conv8)

174

175 upconv9=Conv2DTranspose (32 ,(2 ,2), strides =(2 ,2), padding="same")(conv8

)

176 upconv9=concatenate ([upconv9 , conv1])

177 conv9=Conv2D (32,(3,3), activation="relu", kernel_initializer="

he_normal", padding="same")(upconv9)

178 conv9=Dropout (0.2)(conv9)

179 conv9=Conv2D (32,(3,3), activation="relu", kernel_initializer="

he_normal", padding="same")(conv9)

180

181 conv9=Conv2D (16,(3,3), activation="relu", kernel_initializer="

he_normal", padding="same")(conv9)

182 outputs=Conv2D(n_classes ,(1 ,1), activation="sigmoid", padding="same")(

conv9)

183

184

185 model=Model(inputs =[ inputs], outputs =[ outputs ])

186

187 return model

188

189

190 import keras

191 from keras.optimizers import Adam

192 model = unet_model(n_classes)

193 # optimizer includes the backpropagation algorithms to train the model.

194 # binary cross entropy is used for binary classification of true or not

true situations in segmentaiton.

195 # optimizer tries to minimize the loss function.
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196 # jacard_coef determined "Intersection Over Union" score

197 ’’’

198 loss=[

199 jacard_loss ,

200 ’binary_crossentropy ’

201 ],

202 loss_weights =[1,1],

203 metrics =[

204 "accuracy",

205 jacard_coef

206 ]

207 ’’’

208 model.compile(

209 optimizer=Adam(learning_rate = 1e-3), loss=jacard_loss ,

210 metrics =[’accuracy ’,jacard_coef]

211 )

212

213

214

215

216 # to avoid overfitting of model

217 earlystopping = EarlyStopping(

218 monitor="val_loss",

219 mode="min", patience=3,

220 restore_best_weights=True

221 )

222

223

224

225 # make a new folder to save model

226 try:

227 os.makedirs(root_dir+"models")

228 except:

229 print("Directory already available , so not created")

230

231

232

233 history = model.fit(

234 X,Y,

235 steps_per_epoch=steps_per_epoch ,

236 epochs =20,

237 verbose=1,

238 callbacks =[ earlystopping],

239 validation_data =(X_test , Y_test),

240 validation_steps=val_steps_per_epoch

241 )

242

243

244

245 #plot the training and validation accuracy and loss at each epoch

246 loss = history.history[’loss’]

247 val_loss = history.history[’val_loss ’]

248 epochs = range(1, len(loss) + 1)

249 plt.plot(epochs , loss , ’y’, label=’Training loss’)
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250 plt.plot(epochs , val_loss , ’r’, label=’Validation loss’)

251 plt.title(’Training and validation loss’)

252 plt.xlabel(’Epochs ’)

253 plt.ylabel(’Loss’)

254 plt.legend ()

255 plt.show()

256

257 acc = history.history[’accuracy ’]

258 val_acc = history.history[’val_accuracy ’]

259 plt.plot(epochs , acc , ’y’, label=’Training acc’)

260 plt.plot(epochs , val_acc , ’r’, label=’Validation acc’)

261 plt.title(’Training and validation accuracy ’)

262 plt.xlabel(’Epochs ’)

263 plt.ylabel(’Accuracy ’)

264 plt.legend ()

265 plt.show()

266

267

268 from keras.metrics import MeanIoU

269 n_classes = 2

270 IOU_keras = MeanIoU(num_classes=n_classes)

271 IOU_keras.update_state(y_pred_thresh , Y_test)

272 print("Mean IoU =", IOU_keras.result ().numpy ())

273

274

275

276

277 # IOU for individual class

278 values = np.array(IOU_keras.get_weights ()).reshape(n_classes , n_classes)

279 print(values)

280 print("\n")

281 class0_IOU = values [0 ,0]/( values [0 ,0]+ values [0 ,1])

282 class1_IOU = values [1 ,1]/( values [1 ,0]+ values [1 ,1])

283 print("Unlabelled IOU: ", class0_IOU)

284 print("Buildings IOU: ", class1_IOU)

285

286

287

288

289 for i in range (11 ,30):

290 fig , ax = plt.subplots(1, 3)

291 ax[0]. imshow(X_test[i])

292 ax[1]. imshow(Y_test[i], cmap="gray")

293 ax[2]. imshow(y_pred_thresh[i], cmap="gray")

294 fig.show()

A.2.3 GCP Connection GE API

1

2 PROJECT = ’objectdet0 ’

3

4 !gcloud auth login --project {PROJECT}
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5

6 SERVICE_ACCOUNT=’sujay -gcp@objectdet0.iam.gserviceaccount.com’

7 KEY = ’key.json’

8

9 !gcloud iam service -accounts keys create {KEY} --iam -account {

SERVICE_ACCOUNT}

10

11

12 from google.auth.transport.requests import AuthorizedSession

13 from google.oauth2 import service_account

14

15 credentials = service_account.Credentials.from_service_account_file(KEY)

16 scoped_credentials = credentials.with_scopes(

17 [’https ://www.googleapis.com/auth/cloud -platform ’])

18

19 session = AuthorizedSession(scoped_credentials)

20

21 url = ’https :// earthengine.googleapis.com/v1beta/projects/earthengine -

public/assets/LANDSAT ’

22

23 response = session.get(url)

24

25 from pprint import pprint

26 import json

27 pprint(json.loads(response.content))

28

29 import ee

30

31 # Get some new credentials since the other ones are cloud scope.

32 ee_creds = ee.ServiceAccountCredentials(SERVICE_ACCOUNT , KEY)

33 ee.Initialize(ee_creds)

34

35

36 coords = [

37 -121.58626826832939 ,

38 38.059141484827485 ,

39 ]

40 region = ee.Geometry.Point(coords)

41

42 collection = ee.ImageCollection(’COPERNICUS/S2’)

43 collection = collection.filterBounds(region)

44 collection = collection.filterDate(’2020 -04 -01’, ’2020 -09 -01’)

45 image = collection.median ()

46

47

48 serialized = ee.serializer.encode(image)

49

50 # Make a projection to discover the scale in degrees.

51 proj = ee.Projection(’EPSG :4326’).atScale (10).getInfo ()

52

53 # Get scales out of the transform.

54 scale_x = proj[’transform ’][0]

55 scale_y = -proj[’transform ’][4]

56

57



57

58

59

60 url = ’https :// earthengine.googleapis.com/v1beta/projects /{}/ image:

computePixels ’

61 url = url.format(PROJECT)

62

63 response = session.post(

64 url=url ,

65 data=json.dumps({

66 ’expression ’: serialized ,

67 ’fileFormat ’: ’PNG’,

68 ’bandIds ’: [’B4’,’B3’,’B2’],

69 ’grid’: {

70 ’dimensions ’: {

71 ’width’: 256,

72 ’height ’: 256

73 },

74 ’affineTransform ’: {

75 ’scaleX ’: scale_x ,

76 ’shearX ’: 0,

77 ’translateX ’: coords [0],

78 ’shearY ’: 0,

79 ’scaleY ’: scale_y ,

80 ’translateY ’: coords [1]

81 },

82 ’crsCode ’: ’EPSG :4326’,

83 },

84 ’visualizationOptions ’: {’ranges ’: [{’min’: 0, ’max’: 3000}]} ,

85 })

86 )

87

88 image_content = response.content

89

90

91 # Import the Image function from the IPython.display module.

92 Image(image_content)

93

94

95

96 drive.mount(’/content/drive ’)

97 path = r"/content/drive/MyDrive/model_test/images"

98 os.chdir(path)

99 with open(path+"/image.png", "wb") as img:

100 img.write(image_content)
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